Skip to main content
Log in

Kinetics and critical conditions for initiation of dynamic recrystallization during hot compression deformation of AISI 321 austenitic stainless steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Dynamic recrystallization behavior of AISI 321 austenitic stainless steel were studied using hot compression tests over the range of temperatures from 900 °C to 1200 °C and strain rates from 0.001 s-1 to 1 s-1. The critical strain and stress for initiation of dynamic recrystallization were determined by plotting strain hardening rate vs. stress curves and a constitutive equation describing the flow stress at strains lower than peak strain. Also, the strain at maximum flow softening was obtained and the effect of deformation conditions (Z parameter) on the critical strain and stress were analyzed. Finally, the volume fraction of dynamic recrystallization was calculated at different deformation conditions using these critical values. Results showed that the model used for predicting the kinetics of dynamic recrystallization has a great consistency with the data, in the form of θ-ε curves, directly acquired from experimental flow curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kim and Y. Yoo, Mat. Sci. Eng. A 311, 108 (2001).

    Article  Google Scholar 

  2. A. I. Fernandez, P. Uranga, B. Lopez, and J. M. Rodriguez, Mat. Sci. Eng. A 361, 367 (2003).

    Article  Google Scholar 

  3. H. E. Hu, L. Zhen, B. Y. Zhang, L. Yang, and J. Z. Chen, Mater. Charact. 59, 1185 (2008).

    Article  Google Scholar 

  4. F. H. Samuel, S. Yue, J. J. Jonas, and B. A. Zbinden, ISIJ Int. 29, 878 (1989).

    Article  Google Scholar 

  5. C. Roucoules, P. D. Hodgson, S. Yue, and J. J. Jonas, Metall. Mater. Trans. A 25, 389 (1994).

    Article  Google Scholar 

  6. H. Beladi, P. Cizek, and P. D. Hodgson, Scripta Mater. 62, 191 (2010).

    Article  Google Scholar 

  7. P. Uranga, A. I. Fernandez, B. Lopez, and J. M. Rodriguez, Mat. Sci. Eng. A 345, 319 (2003).

    Article  Google Scholar 

  8. K. H. Jung, H. W. Lee, and Y. T. Lm, Mat. Sci. Eng. A 519, 94 (2009).

    Article  Google Scholar 

  9. M. Meysami and S. Mousavi, Mat. Sci. Eng. A 528, 3049 (2011).

    Article  Google Scholar 

  10. S. L. Semiatin and G. D. Lahoti, Metall. Mater. Trans. A 12, 1719 (1981).

    Article  Google Scholar 

  11. I. Mejia, A. Bedolla, C. Maldonado, and J. M. Cabrera, Mat. Sci. Eng. A 528, 4133 (2011).

    Article  Google Scholar 

  12. S. Solhjoo, Mater. Design 31, 1360 (2010).

    Article  Google Scholar 

  13. A. Dehghan-Manshadi, M. R. Barnet, and P. D. Hodgson, Metall. Mater. Trans. A 39, 1359 (2008).

    Article  Google Scholar 

  14. J. J. Jonas and E. I. Poliak, Mater. Sci. Forum 426-432, 57 (2003).

    Article  Google Scholar 

  15. N. D. Ryan and H. J. McQeen, Can. Metall. Quart. 29, 147 (1990).

    Article  Google Scholar 

  16. E. I. Poliak and J. J. Jonas, ISIJ Int. 43, 684 (2003).

    Article  Google Scholar 

  17. E. I. Poliak and J. J. Jonas, Acta Mater. 44, 127 (1996).

    Article  Google Scholar 

  18. E. I. Poliak and J. J. Jonas, ISIJ Int. 43, 692 (2003).

    Article  Google Scholar 

  19. P. R. Rios, F. S. Jr, H. R. Sandim, R. L. Plaut, and A. F. Padilha, Mat. Res. 8, 225 (2005).

    Article  Google Scholar 

  20. Y. C. Lin and X. Chen, Mater. Design 32, 1733 (2011).

    Article  Google Scholar 

  21. C. Sun, G. Liu, Q. Zhang, R. Li, and L. Wang, Mat. Sci. Eng. A 595, 92 (2014).

    Article  Google Scholar 

  22. C. M. Sellars, Philos. T. R. Soc. A 288, 147 (1978).

    Article  Google Scholar 

  23. R. Ebrahimi, S. H. Zahiri, and A. Najafizadeh, J. Mater. Process. Tech. 171, 301 (2006).

    Article  Google Scholar 

  24. H. Mirzadeh and A. Najafizadeh, Mater. Design 31, 1174 (2010).

    Article  Google Scholar 

  25. X. Liu, L. Zhang, R. Qi, L. Chen, M. Jin, and B. Guo, J. Iron Steel Res. Int. 23, 238 (2016).

  26. M. Shaban and B. Eghbali, Mat. Sci. Eng. A 527, 4320 (2010).

    Article  Google Scholar 

  27. A. D. Manshadi, M. R. Barnett, and P. D. Hodgson, Mat. Sci. Eng. A 485, 664 (2008).

    Article  Google Scholar 

  28. G. R. Stewart, A. M. Elwazri, S. Yue, and J. J. Jonas, Mater. Sci. Tech. 22, 519 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beitallah Eghbali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazani, M.S., Eghbali, B. & Ebrahimi, G. Kinetics and critical conditions for initiation of dynamic recrystallization during hot compression deformation of AISI 321 austenitic stainless steel. Met. Mater. Int. 23, 964–973 (2017). https://doi.org/10.1007/s12540-017-6391-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6391-8

Keywords

Navigation