Advertisement

Metals and Materials International

, Volume 23, Issue 3, pp 434–443 | Cite as

Deformation behavior, microstructure evolution and hot workability of Mg-3.7Gd-2.9Y-0.7Zn-0.7Zr alloy

  • Xueze Jin
  • Wenchen Xu
  • Debin Shan
  • Chang Liu
  • Qi Zhang
Article

Abstract

The deformation behavior of Mg-3.7Gd-2.9Y-0.7Zn-0.7Zr magnesium alloy has been investigated by thermal compression test conducted on a Gleeble-1500D thermal simulator in the temperature range of 375-475 °C and strain rate range of 0.001-1 s-1. It indicates that the addition of RE, the introduction of LPSO phases and the segregation of Zr element near the grain boundaries contributed to the high activate energy (Q = 354.08 kJ/mol) of the present Mg alloy. The long period stacking ordered (LPSO) phase could not only strengthen the alloy and contribute to the nucleation of dynamic recrystallization, but also re-precipitate in the recrystallization grains. The processing map based on MDMM and Murty’s instability criterion was more precise than the one based on DMM and Prasad’s instability criterion. The processing map exhibited two workable regions with sufficient dynamic recrystallization: 415-435 °C, 0.001-0.006 s-1 and 435-475 °C, 0.01-1 s-1. The flow instability was prone to occur at low temperature and high strain rate associated with the appearance of bands of flow localization and cracking.

Keywords

RE-containing Mg alloy deformation behavior activation energy flow instability processing map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Padmanaban and V. Balasubramanian, Met. Mater. Int. 17, 831 (2011).CrossRefGoogle Scholar
  2. 2.
    M. Yamasaki, K. Hashimoto, K. Hagihara, and Y. Kawamura, Acta Mater. 59, 3646 (2011).CrossRefGoogle Scholar
  3. 3.
    X. S. Xia, Q. Chen, K. Zhang, Z. D. Zhao, M. L. Ma, X. G. Li, et al. Mat. Sci. Eng. A 587, 283 (2013).CrossRefGoogle Scholar
  4. 4.
    T. Honma, T. Ohkubo, S. Kamado, and K. Hono, Acta Mater. 55, 4137 (2007).CrossRefGoogle Scholar
  5. 5.
    P. Vostry, B. Smola, I. Stuliková, F. Buch, and B. L. Mordike, Phys. Status Solidi A 175, 491 (1999).CrossRefGoogle Scholar
  6. 6.
    K. Liu, J. H. Zhang, W. Sun, X. Qiu, H. Y. Lu, J. Meng, et al. J. Mater. Sci. 44, 74 (2009).CrossRefGoogle Scholar
  7. 7.
    K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, Y. Umakoshi, et al. Acta Mater. 58, 6282 (2010).CrossRefGoogle Scholar
  8. 8.
    K. Liu, J. H. Zhang, G. H. Su, D. X. Tang, L. L. Rokhlin, J. Meng, et al. J. Alloy. Compd. 481, 811 (2009).CrossRefGoogle Scholar
  9. 9.
    M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawan, Scripta Mater. 53, 799 (2005).CrossRefGoogle Scholar
  10. 10.
    L. Zheng, C. M. Liu, Y. C. Wan, P. W. Yang, and X. Shu, J. Alloy. Compd. 509, 8832 (2011).CrossRefGoogle Scholar
  11. 11.
    Y. Q. Chi, M. Y. Zheng, C. Xu, Y. Z. Du, X. G. Qiao, X. Y. Lv, Mat. Sci. Eng. A 565, 112 (2013).CrossRefGoogle Scholar
  12. 12.
    D. J. Li, X. Q. Zeng, J. Dong, C. Q. Zhai, and W. J. Ding, J. Alloy. Compd. 468, 164 (2009).Google Scholar
  13. 13.
    L. C. Tsao, Y. T. Huang, and K. H. Fan, Mater. Design 53, 865 (2014).CrossRefGoogle Scholar
  14. 14.
    H. Z. Li, H. J. Wang, Z. Li, C. M. Liu, and H. T. Liu, Mat. Sci. Eng. A 528, 154 (2010).CrossRefGoogle Scholar
  15. 15.
    C. Zener and J. H. Hollomon, J. Appl. Phys. 15, 22 (1944).CrossRefGoogle Scholar
  16. 16.
    B. J. Lv, J. Peng, L. L. Zhu, Y. J. Wang, and A. T. Tang, Mat. Sci. Eng. A 599, 150 (2014).CrossRefGoogle Scholar
  17. 17.
    I. H. Jung, M. Sanjari, J. Kim, and S. Yue, Scripta Mater. 102, 1 (2015).CrossRefGoogle Scholar
  18. 18.
    S. A. Farzadfar, É. Martin, M. Sanjari, E. Essadiqi, and S. Yue, J. Mater. Sci. 47, 5488 (2012).CrossRefGoogle Scholar
  19. 19.
    Q. Chen, X. S. Xia, B. G. Yuan, D. Y. Shu, Z. D. Zhao, and J. C. Han, Mat. Sci. Eng. A 593, 38 (2014).CrossRefGoogle Scholar
  20. 20.
    X. S. Xia, Q. Chen, J. P. Li, D. Y. Shu, C. K. Hu, Z. D. Zhao, et al. J. Alloy. Compd. 610, 203 (2014).CrossRefGoogle Scholar
  21. 21.
    Z. W. Shao, X. R. Zhu, R. Wang, J. Wang, Y. D. Xu, G. P. Ling, et al. Mater. Design 51, 826 (2013).CrossRefGoogle Scholar
  22. 22.
    B. J. Lv, J. Peng, Y. Peng, A. T. Tang, and F. S. Pan, Mat. Sci. Eng. A 579, 209 (2013).CrossRefGoogle Scholar
  23. 23.
    X. S. Xia, Q. Chen, S. H. Huang, J. Lin, C. K. Hu, and Z. D. Zhao, J. Alloy. Compd. 644, 308 (2015).CrossRefGoogle Scholar
  24. 24.
    T. Bhattacharjee, T. Nakata, T. T. Sasaki, S. Kamado, and K. Hono, Scripta Mater. 90-91, 37 (2014).CrossRefGoogle Scholar
  25. 25.
    A. Levinson, R. K. Mishra, R. D. Doherty, and S. R. Kalidindi, Acta Mater. 61, 5966 (2013).CrossRefGoogle Scholar
  26. 26.
    H. Mirzadeh, M. Roostaei, M. H. Parsa, and R. Mahmudi, Mater. Design 68, 228 (2015).CrossRefGoogle Scholar
  27. 27.
    C. Xu, M. Y. Zheng, K. Wu, E. D. Wang, G. H. Fan, Y. T. Liu, et al. Mat. Sci. Eng. A 559, 232 (2013).CrossRefGoogle Scholar
  28. 28.
    C. Xu, S. W. Xu, M. Y. Zheng, K. Wu, E. D. Wang, X. Y. Lv, et al. J. Alloy. Compd. 524, 46 (2012).CrossRefGoogle Scholar
  29. 29.
    Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, D. R. Barker, et al. Metall. Mater. Trans. A 15, 1883 (1984).CrossRefGoogle Scholar
  30. 30.
    S. V. S. N. Murty and B. N. Rao, J. Phys. D Appl. Phys. 31, 3306 (1998).CrossRefGoogle Scholar
  31. 31.
    W. W. Peng, W. D. Zeng, Q. J. Wang, and H. Q. Yu, Mat. Sci. Eng. A 571, 116 (2013).CrossRefGoogle Scholar
  32. 32.
    N. Srinivasan, Y. V. R. K. Prasad, and P. R. Rao, Mat. Sci. Eng. A 476, 146 (2008).CrossRefGoogle Scholar
  33. 33.
    R. K. Gupta, S. V. S. N. Murty, B. Pant, V. Agarwala, and P. P. Sinha, Mat. Sci. Eng. A 551, 169 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Xueze Jin
    • 1
  • Wenchen Xu
    • 1
  • Debin Shan
    • 1
  • Chang Liu
    • 1
  • Qi Zhang
    • 1
  1. 1.School of Materials Science and Engineering & National Key Laboratory for Precision Hot Processing of MetalsHarbin Institute of TechnologyHarbinP.R. China

Personalised recommendations