Metals and Materials International

, Volume 23, Issue 3, pp 426–433 | Cite as

Analysis of acoustic emission signals at austempering of steels using neural networks

  • Malgorzata Łazarska
  • Tadeusz Z. Wozniak
  • Zbigniew Ranachowski
  • Andrzej Trafarski
  • Grzegorz Domek


Bearing steel 100CrMnSi6-4 and tool steel C105U were used to carry out this research with the steels being austempered to obtain a martensitic-bainitic structure. During the process quite a large number of acoustic emissions (AE) were observed. These signals were then analysed using neural networks resulting in the identification of three groups of events of: high, medium and low energy and in addition their spectral characteristics were plotted. The results were presented in the form of diagrams of AE incidence as a function of time. It was demonstrated that complex transformations of austenite into martensite and bainite occurred when austempering bearing steel at 160 °C and tool steel at 130 °C respectively. The selected temperatures of isothermal quenching of the tested steels were within the area near to MS temperature, which affected the complex course of phase transition. The high activity of AE is a typical occurrence for martensitic transformation and this is the transformation mechanism that induces the generation of AE signals of higher energy in the first stage of transition. In the second stage of transformation, the initially nucleated martensite accelerates the occurrence of the next bainitic transformation.


microstructure phase transformation dislocation ultrasonics alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Lambert, X. Garat, T. Sturel, A. F. Gourgues, and A. Gingell, Scripta Mater. 43, 161 (2000).CrossRefGoogle Scholar
  2. 2.
    R. Botten, X. Wu, D. Hu, and M. H. Loretto, Acta Mater. 49, 1687 (2001).CrossRefGoogle Scholar
  3. 3.
    E. S. Davenport and E. C. Bain, T. Metall. Soc. AIME 90, 117 (1930).Google Scholar
  4. 4.
    M. Kang, M.-X. Zhang, and M. Zhu, Acta Mater. 54, 2121 (2006).CrossRefGoogle Scholar
  5. 5.
    S. M. C. Van Bohemen, M. J. Santofimiaa, and J. Sietsma, Scripta Mater. 58, 488 (2008).CrossRefGoogle Scholar
  6. 6.
    H. K. D. H. Bhadeshia and C. H. Young, Mater. Sci. Tech. 10, 209 (1994).CrossRefGoogle Scholar
  7. 7.
    M. Hillert, Scripta Mater. 47, 175 (2002).CrossRefGoogle Scholar
  8. 8.
    N. F. Kennon, Metall. Trans. A 9, 57 (1978).CrossRefGoogle Scholar
  9. 9.
    T. Z. Wozniak and Z. Ranachowski, Arch. Acoust. 31, 3 (2006).Google Scholar
  10. 10.
    T. Z. Wozniak, Mat. Sci. Eng A 408, 309 (2005).CrossRefGoogle Scholar
  11. 11.
    T. Z. Wozniak, Mater. Charact. 59, 708 (2008).CrossRefGoogle Scholar
  12. 12.
    T. Z. Wozniak, J. Jelenkowski, K. Rozniatowski, and Z. Ranachowski, Mater. Sci. Forum 726, 55 (2012).CrossRefGoogle Scholar
  13. 13.
    T. Z. Wozniak, K. Rozniatowski, and Z. Ranachowski, Kovove Mater. 49, 319 (2011).Google Scholar
  14. 14.
    T. Z. Wozniak, K. Rozniatowski, and Z. Ranachowski, Met. Mater. Int. 17, 365 (2011).CrossRefGoogle Scholar
  15. 15.
    T. Z. Wozniak, Z. Ranachowski, P. Ranachowski, W. Ozgowicz, and A. Trafarski, Arch. Metall. Mater. 59, 1705 (2014).Google Scholar
  16. 16.
    B. Widrow, R. G. Winter, and R. A. Baxter, Proc. IEEE First Annual International Conference on Neural Networks: Learning Phenomena in Layered Neural Networks, Vol. 2, p. 411, IEEE Expert, California, USA (1987).Google Scholar
  17. 17.
    A. Pawelek, J. Kusnierz, Z. Jasienski, Z. Ranachowski, and J. Bogucka, Arch. Metall. Mater. 54, 83 (2009).Google Scholar
  18. 18.
    A. Pawelek, J. Kusnierz, J. Bogucka, J. Jasinski, Z. Ranachowski, T. Debowski, et al. Arch. Acoust. 32, 955 (2007).Google Scholar
  19. 19.
    M. Oka and H. Okamoto, Metall. Trans. A 19, 447 (1988).CrossRefGoogle Scholar
  20. 20.
    G. R. Speich and A. J. Schwoeble, STP571Monitoring Structural Integrity by Acoustic Emission (eds. J. C. Spanner and J. W. McElroy), pp. 40–58, ASTM International, USA (1975).Google Scholar
  21. 21.
    A. Navarro-López, J. Sietsma, and M. J. Santofimia, Metall. Trans. A 47, 1028 (2016).CrossRefGoogle Scholar
  22. 22.
    H. Hu, G. Xu, Y. Zhang, Z. Xue, and M. Zhou, Met. Mater. Int. 30, 818 (2015).Google Scholar
  23. 23.
    S. Chupatanakul, P. Nash, and D. Chen, Met. Mater. Int. 6, 453 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Malgorzata Łazarska
    • 1
    • 2
  • Tadeusz Z. Wozniak
    • 2
  • Zbigniew Ranachowski
    • 1
  • Andrzej Trafarski
    • 2
  • Grzegorz Domek
    • 2
  1. 1.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarszawaPoland
  2. 2.Institute of TechnologyKazimierz Wielki UniversityBydgoszczPoland

Personalised recommendations