Skip to main content
Log in

Extending the boundaries of mechanical properties of Ti-Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We underscore here a novel approach to extend the boundaries of mechanical properties of Ti-Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation. The proposed approach yields a refined microstructure and high density nano-sized precipitates, with consequent increase in strength. Steels subjected to ultra-fast cooling during austenite-to-ferrite transformation led to 145 MPa increase in yield strength, while the small deformation after ultra-fast cooling process led to increase in strength of 275 MPa. The ultra-fast cooling refined the ferrite and pearlite constituents and enabled uniform dispersion, while the deformation after ultra-fast cooling promoted precipitation and broke the lamellar pearlite to spherical cementite and long thin strips of FexC. The contribution of nano-sized precipitates to yield strength was estimated to be ~247.9 MPa and ~358.3 MPa for ultrafast cooling and deformation plus ultrafast cooling processes. The nano precipitates carbides were identified to be (Ti, Nb)C and had a NaCl-type crystal structure, and obeyed the Baker-Nutting orientation relationship with the ferrite matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. J. Petch, Philos. Mag. 3, 1089 (1958).

    Article  Google Scholar 

  2. S. N. Prasad and D. S. Sarma, Mat. Sci. Eng. A 399, 161 (2005).

    Article  Google Scholar 

  3. M. Thompson, M. Ferry, and P. A. Manohar, ISIJ Int. 41, 891 (2001).

    Article  Google Scholar 

  4. E. V. Pereloma, C. Bayley, and J. D. Boyd, Mat. Sci. Eng. A 210, 16 (1996).

    Article  Google Scholar 

  5. S. Shanmugam, N. K. Ramisetti, R. D. K. Misra, T. Mannering, D. Panda, and S. Jansto, Mat. Sci. Eng. A 460-461, 335 (2007).

    Article  Google Scholar 

  6. R. D. K. Misra, H. Nathani, J. E. Hartmann, and F. Siciliano, Mat. Sci. Eng. A 394, 339 (2005).

    Article  Google Scholar 

  7. G. D. Wang, Shanghai Metal 30, 1 (2008).

    Google Scholar 

  8. Y. Tian, S. Tang, B. Wang, Z. D. Wang, and G. D. Wang, Sci. China Technol. Sc. 55, 1566 (2012).

    Article  Google Scholar 

  9. X. Li, Z. Wang, X. Deng, G. Wang, and R. D. K. Misra, Metall. Mater. 47A, 1929 (2016).

    Article  Google Scholar 

  10. B. Wang, Z. Y. Liu, X. G. Zhou, G. D. Wang, and R. D. K. Misra, Mat. Sci. Eng. A 575, 189 (2013).

    Article  Google Scholar 

  11. X. T. Deng, Z. D. Wang, R. D. K. Misra, J. Han, and G. D Wang, J. Mater. Eng. Perform. 24, 1072 (2015).

    Article  Google Scholar 

  12. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda, ISIJ Int. 44, 1945 (2004).

    Article  Google Scholar 

  13. K. Seto, Y. Funakawa, and S. Kaneko, JFE Technical Report 10, 19 (2007).

    Google Scholar 

  14. Y. Funakawa and K. Seto, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan 93, 49 (2007).

    Article  Google Scholar 

  15. I. B. Timokhina, P. D. Hodgson, S. P. Ringer, R. K. Zheng, and E. V. Pereloma, Scripta Mater. 56, 601 (2007).

    Article  Google Scholar 

  16. C. Y. Chen, H. W. Yen, F. H. Kao, W. C. Li, C. Y. Huang, J. R. Yang, and S. H. Wang, Mat. Sci. Eng. A 499, 162 (2009).

    Article  Google Scholar 

  17. H. W. Yen, C. Y. Huang, and J. R. Yang, Scripta Mater. 61, 616 (2009).

    Article  Google Scholar 

  18. H. W. Yen, C. Y. Chen, T. Y. Wang, C. Y. Huang, and J. R. Yang, Mater. Sci. Tech. Ser. 26, 421 (2010).

    Article  Google Scholar 

  19. J. H. Jang, C.-H. Lee, Y.-U. Heo, and D.-W. Suh, Acta Mater. 60, 208 (2012).

    Article  Google Scholar 

  20. S. G. Hong, K. B. Kang, and C. G. Park, Scripta Mater. 46, 163 (2002).

    Article  Google Scholar 

  21. C. Y. Chen, H. W. Yen, F. H. Kaoa, W. C. Li, C. Y. Huang, J. R. Yang, et al. Mat. Sci. Eng. A 499, 162 (2009).

    Article  Google Scholar 

  22. Z. Jia, R. D. K. Misra, R. O’ Malley, and S. J. Jansto, Mat. Sci. Eng. A 528, 7077 (2011).

    Article  Google Scholar 

  23. K. Kamibayashi, Y. Tanabe, Y. Takemoto, I. Shimizu, and T. Senuma, ISIJ Int. 52, 151 (2012).

    Article  Google Scholar 

  24. J. H. Jang, Y. U. Heo, C. H. Lee, H. K. D. H. Bhadeshia, and D.-W. Suh, Mater. Sci. Tech. Ser. 29, 309 (2013).

    Article  Google Scholar 

  25. C. Y. Chena, C. C. Chen, and J. R. Yang, Mater. Charact. 88, 69 (2014).

    Article  Google Scholar 

  26. N. Kamikawa, Y. Abe, G. Miyamoto, Y. Funakawa, and T. Furuhara, ISIJ Int. 54, 212 (2014).

    Article  Google Scholar 

  27. D. B. Park, M. Y. Huh, J. H. Shim, J. Y. Suh, K. H. Lee, and W. S. Jung, Mat. Sci. Eng. A 560, 528 (2013).

    Article  Google Scholar 

  28. R. Okamoto, A. Borgenstam, and J. Ågren, Acta Mater. 58, 4783 (2010).

    Article  Google Scholar 

  29. F. B. Pickering, Physical Metallurgy and the Design of Steels, p. 63, Applied Science Publishers Ltd, London, UK (1978).

    Google Scholar 

  30. Q. L. Yong, Secondary Phases in Steels, p. 8, Metallurgy Industry Press, Beijing, China (2006).

    Google Scholar 

  31. L. H. Friedman and D. C. Chrzan, Phys. Rev. Lett. 83, 2715 (1998).

    Article  Google Scholar 

  32. M. F. Ashby, Strengthening Methods in Crystals, p. 9, Applied Science Publishers Ltd, London, UK (1971).

    Google Scholar 

  33. T. Gladman, The Physical Metallurgy of Microalloyed Steels, p. 39, Institute of Materials, London, UK (1997).

    Google Scholar 

  34. A. J. E. Foreman and M. J. Makin, Can. J. Phys. 45, 511 (1967).

    Article  Google Scholar 

  35. Y. Ohmori, Trans. ISIJ Int. 11, 339 (1971).

    Google Scholar 

  36. R. D. K. Misra, K. K. Tenneti, and G. G. Weatherly, Metall. Mater. 34A, 2341 (2003).

    Article  Google Scholar 

  37. R. M. Brito and H. J. Kestenbach, J. Mater. Sci. 16, 1257 (1981).

    Article  Google Scholar 

  38. H. Kestenbach, Mater. Sci. Tech. Ser. 13, 731 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangtao Deng or Tianliang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Fu, T., Wang, Z. et al. Extending the boundaries of mechanical properties of Ti-Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation. Met. Mater. Int. 23, 175–183 (2017). https://doi.org/10.1007/s12540-017-6241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6241-8

Keywords

Navigation