Skip to main content
Log in

Heat treatment response of TiC-reinforced steel matrix composite

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A particulate TiC-reinforced SKD11 steel matrix composite is fabricated by using a pressure infiltration casting, achieving a homogeneous distribution of the particles with 60 vol%. The retained austenite fraction in the composite matrix is approximately 19% after quenching from the austenitization temperature of 1010 °C, which is larger than 13% in as-quenched condition of unreinforced SKD11. A combined analysis on the austenite lattice parameter using XRD profiles and first-principle calculation suggests the increase of carbon content in the steel matrix possibly by partial dissolution of TiC during casting. The change of carbon content and prior austenite grain size reasonably accounts for the increase of retained austenite fraction in the composite matrix. In the austenitizing temperatures ranging from 950 °C to 1040 °C, the retained austenite fraction in the composite matrix in as-quenched condition increases more rapidly than that of unreinforced SKD11 with the increase of austenitization temperature, while the hardness of the composite is less sensitive to the austenitization temperature. This suggests that it is advantageous to conduct the austenitization at a temperature below 1010 °C, which is typical practice of austenitization of the unreinforced SKD11, because the retention of austenite is effectively suppressed while minimizing the loss of hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. U. Kainer, Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering, pp. 1–4, Wiley-VCH, Weinheim (2006).

    Book  Google Scholar 

  2. I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, J. Mater. Sci. 26, 1137 (1991).

    Article  Google Scholar 

  3. S. C. Tjong and Z. Y. Ma, Mater. Sci. Eng. R 29, 49 (2000).

    Article  Google Scholar 

  4. J.-W. Kim, J.-M. Lee, J.-H. Lee, and J.-C. Lee, Met. Mater. Int. 20, 1151 (2014).

    Article  Google Scholar 

  5. J. Zhang, J.-M. Lee, Y.-H. Cho, S.-H. Kim, and H. Yu, Met. Mater. Int. 22, 324 (2016).

    Article  Google Scholar 

  6. I.-J. Shon, S.-M. Kwon, N.-R. Park, J.-W. Shin, S.-H. Oh, and B.-S. Kim, Korean J. Met. Mater. 53, 555 (2015).

    Article  Google Scholar 

  7. E. Pagounis and V. K. Lindroos, Mater. Sci. Eng. A 246, 221 (1998).

    Article  Google Scholar 

  8. M. Kiviö, L. Holappa, T. Yoshikawa, and T. Tanaka, High Temp. Mater. Proc. 31, 645 (2012).

    Article  Google Scholar 

  9. K. I. Parashivamurthy, R. K. Kumar, S. Seetharamu, and M. N. Chandrasekharaiah, J. Mater. Sci. 36, 4519 (2001).

    Article  Google Scholar 

  10. F. Akhtar, Can. Metall. Quart. 53, 253 (2014).

    Article  Google Scholar 

  11. T. S. Srivatsan, R. Annigeri, and A. Prakash, Compos. Part A-Appl. S. 28, 377 (1997).

    Article  Google Scholar 

  12. R. K. Galgali, H. S. Ray, and A. K. Chakrabarti, Mater. Sci. Technol. 15, 437 (1999).

    Article  Google Scholar 

  13. N. R. Oh, S. K. Lee, K. C. Hwang, and H. U. Hong, Scripta Mater. 112, 123 (2016).

    Article  Google Scholar 

  14. A. J. Cook and P. S. Werner, Mater. Sci. Eng. A 144, 189 (1991).

    Article  Google Scholar 

  15. L. C. Canale, R. A. Mesquita, and G. E. Totten, Failure Analysis of Heat Treated Steel Components, pp. 327–329, ASM International, Ohio (2008).

    Google Scholar 

  16. H. M. Rietveld, Acta Crystallogr. 22, 151 (1967).

    Article  Google Scholar 

  17. E. Rabkin and L. Klinger, Mater. Sci. Technol. 17, 772 (2001).

    Article  Google Scholar 

  18. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

    Article  Google Scholar 

  19. W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).

    Article  Google Scholar 

  20. G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).

  21. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

  22. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

  23. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  25. J. O. Andersson, T. Helander, L. Höglund, P. F. Shi, and B. Sundman, Calphad 26, 273 (2002).

    Article  Google Scholar 

  26. M. Foller and H. Meyer, Proceedings of the 6th International Tooling Conference (eds. Jens Bergström, G. Fredriksson, M. Johansson, O. Kotik, and F. Thuvander), pp. 1373–1389, Karlstad University, Karlstad (2002).

  27. E. Pagounis, E. Haimi, J. Pietikainen, M. Talvitie, S. Vahvaselka, and V. K. Lindroos, Scripta Mater. 34, 407 (1996).

    Google Scholar 

  28. N. Ridley, H. Stuart, and L. Zwell, T. Metall. Soc. AIME 245, 1834 (1969).

  29. C. S. Roberts, T. Metall. Soc. AIME 197, 203 (1953).

    Google Scholar 

  30. B. D. Butler and J. B. Cohen, J. Phys. I 2, 1059 (1992).

    Google Scholar 

  31. B. D. Butler and J. B. Cohen, Ultramicroscopy 52, 238 (1993).

    Article  Google Scholar 

  32. D. E. Jiang and E. A. Carter, Phys. Rev. B 67, 214103 (2003).

    Article  Google Scholar 

  33. P. Payson and C. H. Savage, T. Metall. Soc. ASM 33, 261 (1944).

    Google Scholar 

  34. E. S. Rowland and S. R. Lyle, T. Metall. Soc. ASM 37, 27 (1946).

    Google Scholar 

  35. R. A. Grange and H. M. Stewart, T. Metall. Soc. AIME 167, 467 (1946).

    Google Scholar 

  36. A. E. Nehrenberg, T. Metall. Soc. AIME 167, 494 (1946).

    Google Scholar 

  37. W. Steven and A. G. Haynes, J. Iron Steel. Res. Int. 183, 349 (1956).

    Google Scholar 

  38. K. W. Andrews, J. Iron Steel. Res. Int. 203, 721 (1965).

    Google Scholar 

  39. K. Ishida, J. Alloy. Compd. 220, 126 (1995).

    Article  Google Scholar 

  40. C. Capdevila, F. G. Caballero, and C. G. de Andres, ISIJ Int. 42, 894 (2002).

    Article  Google Scholar 

  41. S. J. Lee and K. S. Park, Metall. Mater. Trans. A 44, 3423 (2013).

    Article  Google Scholar 

  42. S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama, Mater. Trans. 45, 2245 (2004).

    Article  Google Scholar 

  43. A. García-Junceda, C. Capdevila, F. G. Caballero, and C. García de Andrés, Scripta Mater. 58, 134 (2008).

    Article  Google Scholar 

  44. H. S. Yang and H. K. D. H. Bhadeshia, Scripta Mater. 60, 493 (2009).

  45. W. J. Harris and M. Cohen, T. Metall. Soc. AIME 180, 447 (1949).

  46. H. K. D. H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, 3rd ed., pp. 72–73, Butterworth-Heinemann, Burlington (2011).

    Google Scholar 

  47. G. Krauss, Hardenability Concepts with Applications To Steel (eds. D. V. Doane and J. S. Kirkaldy), pp. 229–248, Metallurgical Society of AIME, Chicago (1978).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woo Suh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Kim, D.H., Hwang, KC. et al. Heat treatment response of TiC-reinforced steel matrix composite. Met. Mater. Int. 22, 935–941 (2016). https://doi.org/10.1007/s12540-016-6176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-6176-5

Keywords

Navigation