Abstract
Corrosion and time–dependent oxide film growth on AA5052 Aluminum alloy in 0.25M Na2SO4 solution containing H2O2 was studied using electrochemical impedance spectroscopy, potentiodynamic polarization, chronoamperometric and open circuit potential monitoring. It was found that sequential addition of H2O2 provokes passivation of AA5052 which ultimately thickens the oxide film and brings slower corrosion rates for AA5052. H2O2 facilitates kinetics of oxide film growth on AA 5052 at 25° and 60 °C which is indicative of formation of a thick barrier film that leads to an increment in the charge transfer resistance. Pitting incubation time increases by introduction of H2O2 accompanied by lower pitting and smoother surface morphologies. At short exposure (up to 8 h) to H2O2–containing solution, the inductive response at low frequencies predominantly determined the corrosion mechanism of AA5052. On the other hand, at prolonged exposure times (more than 24 h) to 0.25M Na2SO4+1vol% H2O2 solution, thicker oxide layers resulted in the mixed inductive–Warburg elements in the spectra.
This is a preview of subscription content, access via your institution.
References
H. Ezuber, A. El-Houd, and F. El-Shawesh, Mater. Design 29, 801 (2008).
M. F. Naeini, M. H. Shariat, and M. Eizadjou, J. Alloy. Compd. 509, 4696 (2011).
B. H. Lee, S. H. Kim, J. H. Park, H. W. Kim, and J. C. Lee, Mater. Sci. Eng. A 657, 115 (2016).
M. Liu and J. Banhart, Mater. Sci. Eng. A 658, 238 (2016).
C. Vargel, Corrosion of Aluminium, p.77, Elsevier, Paris (2004).
A. Hiroki and J. A. LaVerne, J. Phys. Chem. B 109, 3364 (2005).
W. Moshier, G. Davis, and J. Ahearn, Corros. Sci. 27, 785 (1987).
C. Chao, L. Lin, and D. Macdonald, J. Electrochem. Soc 129, 1874 (1982).
R. Narayanan and S. Seshadri, Corrosion Science 50, 1521 (2008).
B. Krishnamurthy, R. E. White, and H. J. Ploehn, Electrochim. Acta 47, 2505 (2002).
L. Choudhary, W. Wang, and A. Alfantazi, Metall. Mater. Trans A 47, 314 (2016).
T. Balusamy and T. Nishimura, Electrochim. Acta (In Press).
F. Reis, H. De Melo, and I. Costa, Electrochim. Acta 51, 1780 (2006).
S. Gudic, J. Radoševic, and M. Kliškic, Electrochim. Acta 47, 3009 (2002).
M. Metikoš-Hukovic, R. Babic, and Z. Grubac, J. Electrochem. Soc. 156, 435 (2009)
K. Chandra and V. Kain, Eng. Fail. Anal. 34, 387 (2013).
M. B. Hariri, S. G. Shiri, Y. Yaghoubinezhad, and M. M. Rahavard, Mater. Design 50, 620 (2013).
N. Sahu, C.K. Sarangi, B. Dash, B. C. Tripathy, B. K. Satpathy, D. Meyrick, and I. N. Bhattacharya, T. Nonferr. Metal. Soc. 25, 615 (2015).
E. G. Dow, R. R. Bessette, C. Marsh-Orndorff, H. Meunier, J. Vanzee, and M. G. Medeiros, J. Power Sources 65, 207 (1997).
K. L. Elmore, C. M. Mason, and J. D. Hatfield, J. Am. Chem. Soc. 67, 1449 (1945).
T. Nickchi and A. Alfantazi, Electrochim. Acta 58, 743 (2011).
S. M. Li, H. Zhang, and J. Liu, T. Nonferr. Metal. Soc. 17, 318 (2007).
H. S. Kuo and W. T. Tsai, Mater. Chem. Phys. 69, 53 (2001).
M. Trueba and S. P. Trasatti, Mater. Chem. Phys. 121, 523 (2010).
D. B. Williams and C. B. Carter, The Transmission Electron Microscope, pp. 3–22, Springer, USA (2009).
H. Ding and L. H. Hihara, ECS Transactions 3, 237 (2007).
T. Nickchi and A. Alfantazi, Corros. Sci. 52, 4035 (2010).
C. Escrivà-Cerdán, E. Blasco-Tamarit, D. M. García-García, J. García-Antón, and A. Guenbour, Corros. Sci. 56, 114 (2012).
G. Frankel, J. Electrochem. Soc. 145, 2186 (1998).
E. Ura-Binczyk, N. Homazava, A. Ulrich, R. Hauert, M. Lewandowska, K. J. Kurzydlowski, and P. Schmutz, Corros. Sci. 53, 1825 (2011).
M. A. Amin, S. S. A. El Rehim, and A. S. El-Lithy, Corros. Sci. 52, 3099 (2010).
T. H. Nguyen and R. Foley, J. Electrochem. Soc. 126, 1855 (1979).
G. Burstein, C. Liu, and R. Souto, Biomaterials 26, 245 (2005).
L. Wang, B. P. Zhang, and T. Shinohara, Mater. Design 31, 857 (2010).
U. Trdan and J. Grum, Corros. Sci. 59, 324 (2012).
A. Döner, E. Solmaz, M. Ozcan, and G. Kardas, Corros. Sci. 53, 2902 (2011).
G. Baril, C. Blanc, and N. Pébère, J. Electrochem. Soc. 148, 489 (2001).
P. Cabot, J. A. Garrido, E. Pe, A. H. Moreira, P. Sumodjo, and W. Proud, Electrochim. Acta 40, 447 (1995).
B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Electrochim. Acta 55, 6218 (2010).
M. Jamesh, S. Kumar, and T. S. Narayanan, Corros. Sci. 53, 645 (2011).
M. Keddam, O. R. Mottos, and H. Takenouti, J. Electrochem. Soc. 128, 257 (1981).
M. Anik and G. Celikten, Corros. Sci. 49, 1878 (2007).
A. Balbo, A. Frignani, V. Grassi, and F. Zucchi, Corros. Sci. 73, 80 (2013).
G. Treacy, G. Wilcox, and M. Richardson, Surf. Coat. Tech. 114, 260 (1999).
D. D. Macdonald, J. Electrochem. Soc. 139, 3434 (1992).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Batmanghelich, F., Hariri, M.B., Sharifi-Asl, S. et al. Corrosion and time dependent passivation of Al 5052 in the presence of H2O2 . Met. Mater. Int. 22, 609–620 (2016). https://doi.org/10.1007/s12540-016-5699-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12540-016-5699-0