Metals and Materials International

, Volume 22, Issue 4, pp 562–571 | Cite as

Effect of composition on the matrix transformation of the Co-Re-Cr-Ta-C alloys

  • Přemysl Beran
  • Debashis Mukherji
  • Pavel Strunz
  • Ralph Gilles
  • Michael Hofmann
  • Lukas Karge
  • Oleksandr Dolotko
  • Joachim Rösler
Article

Abstract

Neutron diffraction measurement was performed in-situ at high temperatures on Co-Re-Ta-C alloys with and without Cr addition. This included alloys containing different C content with the C/Ta ratio varying between 0.5 and 1.0. The Co-Re-solid solution matrix of the experimental alloys is polymorphic (like in pure cobalt) and transformed from low temperature hexagonal ɛ phase to high temperature cubic γ phase on heating. This transformation is reversible and show hysteresis. The main alloying addition, Re, stabilizes the ɛ Co-phase and increases the transformation temperature to above 1273 K. The onset of the \(\varepsilon \rightleftharpoons \gamma\) transformation during heating and cooling was found to differ depending on the alloy composition. In alloys without Cr addition the transformation was not completed on cooling and the high temperature γ phase was partly retained at room temperature in metastable state with the amount depending on the cooling rate from high temperature. The diffraction and microstructural results showed that Cr is ɛ stabilizer (similar as Re) but the role of Ta is not clear. The C/Ta ratio has no direct effect on the matrix phase transformation. Nevertheless, it influences indirectly by determining the amount of Ta which is freely available in the matrix.

Keywords

alloys phase transformation scanning electron microscopy (SEM) X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Reed, The Superalloys Fundumentals and Applications, pp. 1–31, Cambridge University Press, Cambridge (2006).CrossRefGoogle Scholar
  2. 2.
    J. H. Perepezko, Science 326, 1068 (2009).CrossRefGoogle Scholar
  3. 3.
    J. Rösler, D. Mukherji, and T. Baranski, Adv. Eng. Mater. 9, 876 (2007).CrossRefGoogle Scholar
  4. 4.
    D. Mukherji, J. Rösler, J. Wehrs, P. Strunz, P. Beran, R. Gilles, M. Hofmann, M. Hoelzel, H. Eckerlebe, L. Szentmiklósi, and Z. Mácsik Metall. Mater. Trans. A 44, 22 (2013).CrossRefGoogle Scholar
  5. 5.
    B. Gorr, V. Trindade, S. Burk, H.-J. Christ, M. Klauke, D. Mukherji, and J. Rösler, Oxid. Met. 71, 157 (2009).CrossRefGoogle Scholar
  6. 6.
    L. Wang, B. Gorr, H.-J. Christ, D. Mukherji, and J. Rösler, Oxid. Met. 83, 465 (2015).CrossRefGoogle Scholar
  7. 7.
    D. Coutsouradis, A. Davin, and M. Lamberigts, Mater. Sci. Eng. 88, 11 (1987).CrossRefGoogle Scholar
  8. 8.
    D. Mukherji, M. Klauke, P. Strunz, I. Zizak, G. Schumacher, A. Wiedenmann, and J. Rösler, Int. J. Mater. Res. 101, 340 (2010).CrossRefGoogle Scholar
  9. 9.
    D. Mukherji and J. Rösler, J. Phys. Conf. Ser. 240, 012066 (2010).CrossRefGoogle Scholar
  10. 10.
    D. Mukherji, R. Gilles, L. Karge, P. Strunz, P. Beran, H. Eckerlebe, A. Stark, L. Szentmiklósi, Z. Mácsik, G. Schumacher, I. Zizak, M. Hofmann, M. Hoelzel, and J. Rösler, J. Appl. Crystallogr. 47, 1417 (2014).CrossRefGoogle Scholar
  11. 11.
    J. W. Christian, Proc. R. Soc. A 206, 51 (1951).CrossRefGoogle Scholar
  12. 12.
    C. Hitzenberger, H.P. Karnthaler, and A. Korner, Phys. Status Solidi A 89, 133 (1985).CrossRefGoogle Scholar
  13. 13.
    X. Wu, N. Tao, Y. Hong, J. Lu, and K. Lu, Scr. Mater. 52, 547 (2005).CrossRefGoogle Scholar
  14. 14.
    M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd ed., p. 805, McGraw-Hill, New York (1958).Google Scholar
  15. 15.
    K. Shinagawa, H. Chinen, T. Omori, K. Oikawa, I. Ohnuma, K. Ishida, and R. Kainuma, Intermetallics 49, 87 (2014).CrossRefGoogle Scholar
  16. 16.
    D. Mukherji, P. Strunz, R. Gilles, M. Hofmann, F. Schmitz, and J. Rösler, Mater. Lett. 64, 2608 (2010).CrossRefGoogle Scholar
  17. 17.
    J. Singh and S. Rangahathan, Phys. Status Solidi A 73, 243 (1981).CrossRefGoogle Scholar
  18. 18.
    M. Hofmann, R. Schneider, G. A. Seidl, J. Rebelo-Kornmeier, R.C. Wimpory, U. Garbe, Phys. B Condens. Matter. 385-386, 1035 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Hoelzel, A. Senyshyn, N. Juenke, H. Boysen, W. Schmahl, and H. Fuess, Nucl. Instruments Methods Phys. Res. A 667, 32 (2012).CrossRefGoogle Scholar
  20. 20.
    J. Rodríguez-Carvajal, Phys. B Condens. Matter. 192, 55 (1993).CrossRefGoogle Scholar
  21. 21.
    H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
  22. 22.
    A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds - Transition Metal Carbides, Nitrides and Oxides, p. 455, Springer Verlag, Berlin Heidelberg (2001).CrossRefGoogle Scholar
  23. 23.
    G. Santoro, Trans. Metall. Soc. AIME. 227, 1361 (1963).Google Scholar
  24. 24.
    L. V. Zueva and A. I. Gusev, Phys. Solid State. 41, 1032 (1999).CrossRefGoogle Scholar
  25. 25.
    N. Wanderka, private communication.Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Přemysl Beran
    • 1
  • Debashis Mukherji
    • 2
  • Pavel Strunz
    • 1
  • Ralph Gilles
    • 3
  • Michael Hofmann
    • 3
  • Lukas Karge
    • 3
  • Oleksandr Dolotko
    • 3
  • Joachim Rösler
    • 2
  1. 1.Nuclear Physics Institute ASCRŘež near PragueCzech Republic
  2. 2.Technische Universität BraunschweigInstitut für WerkstoffeBraunschweigGermany
  3. 3.Heinz Maier-Leibnitz Zentrum (MLZ)Technische Universität MünchenGarchingGermany

Personalised recommendations