Metals and Materials International

, Volume 22, Issue 2, pp 305–310 | Cite as

Nanoporous microtubes obtained from a Cu-Ni metallic wire

  • Emanuele Francesco Marano
  • Danilo Lussana
  • Alberto Castellero
  • Marcello Baricco
Article

Abstract

Nanoporous microtubes of a nickel-copper alloy were obtained from a Cu-44Ni-1Mn (wt%) commercial wire (200 μm diameter). A new synthesis method was established through three steps: 1) partial oxidation of the wire at 1173 K in air, 2) removal of the inner unoxidized core by chemical etching, 3) reduction in 10 bar hydrogen atmosphere. During oxidation, the segregation of Cu and Ni occurred because of their different diffusion coefficients in the corresponding oxides. As a consequence, pores were formed by Kirkendall effect and due to selective chemical etching of the different oxides. Additional porosity formed because of volume contraction during reduction with hydrogen. After reduction, the microtube shows a composition gradient from the inner wall (almost pure nickel) to the outer wall (almost pure copper). The process allowed to obtain microtubes with tuneable wall thickness and inner pores around 180 ± 80 nm. The morphological features developed suggest improved capillarity properties for applications in MEMS.

Keywords

microtube porous materials annealing oxidation X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. P. Hoffman and P. G. Waper, Microscopic Tube Devices and Method of Manufacture, pp.1–16, patent US6113722A (2000).Google Scholar
  2. 2.
    G. Chatzipirpiridis, O. Ergeneman, J. Pokki, F. Ullrich, S. Fusco, J. A. Ortega, K. M. Sivaraman, B. J. Nelson, and S. Pané, Adv. Healthc. Mater. 4, 209 (2015).CrossRefGoogle Scholar
  3. 3.
    C. Miao, G. Yang, Z. Bu, X. Lu, L. Zhao, W. Guo, and Q. Xue, Mater. Lett. 115, 140 (2014).CrossRefGoogle Scholar
  4. 4.
    J. W. Choi, G. H. Hwang, and S. G. Kang, Met. Mater. Int. 12, 81 (2006).CrossRefGoogle Scholar
  5. 5.
    G. Chatzipirpiridis, E. Avilla, O. Ergeneman, B. J. Nelson, and S. Pane, IEEE Trans. Magn. 50, 6971759 (2014).CrossRefGoogle Scholar
  6. 6.
    W. Zhang, J. Tian, Y. Wang, X. Fang, Y. Huang, W. Chen, Q. Liu, and D. Zhang, J. Mater. Chem. A 2, 4543 (2014).CrossRefGoogle Scholar
  7. 7.
    D. Lelea, S. Nishio, and K. Takano, Int. J. Heat Mass Transfer 47, 2817 (2004).CrossRefGoogle Scholar
  8. 8.
    S. Mondal and S. De, Biomicrofluidics 7, 044113 (2013).CrossRefGoogle Scholar
  9. 9.
    K.-J. Lee, D. Tang, K. Park, and W.-S. Cho, Met. Mater. Int. 16, 99 (2010).CrossRefGoogle Scholar
  10. 10.
    J. Erlebacher and R. Seshadri, MRS Bull. 34, 561 (2009).CrossRefGoogle Scholar
  11. 11.
    E. S. Toberer, J. P. Löfvander, and R. Seshadri Chem. Mater. 18, 1047 (2006).CrossRefGoogle Scholar
  12. 12.
    H. Nakajima and R. Nakamura, J. Nano Res. 7, 1 (2009).CrossRefGoogle Scholar
  13. 13.
    A. J. Smith and D. L. Trimm, Annu. Rev. Mater. Res. 35, 127 (2005).CrossRefGoogle Scholar
  14. 14.
    A. J. Forty, Nature 282, 597 (1979).CrossRefGoogle Scholar
  15. 15.
    S. Rambert and D. Landolt, Electrochim. Acta 31, 1421 (1986).CrossRefGoogle Scholar
  16. 16.
    U.-S. Min and J. C. M. Li, J. Mater. Res. 9, 2878 (1994).CrossRefGoogle Scholar
  17. 17.
    F. Scaglione, E. M. Paschalidou, P. Rizzi, S. Bordiga, and L. Battezzati, Philos. Mag. Lett. 95, 474 (2015).CrossRefGoogle Scholar
  18. 18.
    L. D. Gelb, MRS Bull. 34, 592 (2009).CrossRefGoogle Scholar
  19. 19.
    L. Mi, W. Wei, Z. Zheng, Y. Gao, Y. Liu, W. Chen, and X. Guan, Nanoscale 5, 6589 (2013).CrossRefGoogle Scholar
  20. 20.
    wwwthermocalccom (accessed May 27, 2015).Google Scholar
  21. 21.
    http://wwwingunitnit/~maud/indexhtml (accessed May 27, 2015).Google Scholar
  22. 22.
    Z.-Q. Cao, Y. Niu, and F. Gesmundo, Trans. Nonferrous Met. Soc. China 11, 499 (2001).Google Scholar
  23. 23.
    J. A. Sartell and C. H. Li, Trans. Am. Soc. Met. 55, 158 (1962).Google Scholar
  24. 24.
    C. Wagner, J. Electrochem. Soc. 99, 369 (1952).CrossRefGoogle Scholar
  25. 25.
    D. P. Whittle and G. C. Wood, Corros. Sci. 8, 295 (1968).CrossRefGoogle Scholar
  26. 26.
    G. W. Castellan and W. J. Moore, J. Chem. Phys. 17, 41 (1949).CrossRefGoogle Scholar
  27. 27.
    A. Atkinson and R.I. Taylor, Philos. Mag. A 39, 581 (1979).CrossRefGoogle Scholar
  28. 28.
    A. D. Smigelskas and E. O. Kirkendall, Trans. AIME 171, 130 (1947).Google Scholar
  29. 29.
    H. Hokamoto, Phase Diagrams for Binary Alloys, p.303, ASM International, Metals Park (2000).Google Scholar
  30. 30.
    B. D. Cullity, Elements of X-ray diffraction, 2nd ed., p.376, Addison Wesley, Reading (1978).Google Scholar
  31. 31.
    N. G. Schmahl, J. Barthel, and G. F. Eikerling, Z. Anorg. Allg. Chem. 332, 230 (1964).CrossRefGoogle Scholar
  32. 32.
    H. Eric and M. Timucin, Metall. Trans. B 10, 561 (1979).CrossRefGoogle Scholar
  33. 33.
    J. E. Castle and M. Nasserian-Riabi, Corros. Sci. 15, 537 (1975).CrossRefGoogle Scholar
  34. 34.
    R. Souchet, M. Lenglet, P. Miche, S. Weber, and S. Scherrer, Analusis 21, 173 (1993).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Emanuele Francesco Marano
    • 1
  • Danilo Lussana
    • 2
  • Alberto Castellero
    • 1
  • Marcello Baricco
    • 1
  1. 1.Department of Chemistry and NISUniversity of TurinTurinItaly
  2. 2.Cogne Acciai Speciali SpaAostaItaly

Personalised recommendations