Effect of punch speed on the formability behavior of austenitic stainless steel type 304L


The aim of the present study is to investigate the effect of punch speed on forming limit diagram (FLD) and the formability of austenitic stainless steel type 304L. Effect of strain rate on the height of dome is studied using the hemispherical punch test. Results of this study show that strain rate has significant effect on FLD in this material and high formability obtains at low strain rate. The safe area of FLD between major and minor strains is extended under low strain rate. It is seen that at low punch speed, failure and fracture occur at the pole region (top of the dome), whereas at higher forming rates, failure occurs close to the flange region. Modeling studies are also carried out using Ls-Dyna to know the region of high stress concentration and to predict the location of fracture. There is good agreement between simulation and experimental results.

This is a preview of subscription content, access via your institution.


  1. 1.

    Y. Kasuga, T. S. Park, I. K. Park, and C. Miyasaka, Met. Mater. Int. 18, 265 (2012).

    Article  Google Scholar 

  2. 2.

    X. P. Ma, L. J. Wang, C. M. Liu, and S. V. Subramanian, Mater. Sci. Eng. A 539, 271 (2012).

    Article  Google Scholar 

  3. 3.

    L. Gardner, A. Insausti, K.T. Ng, M. Ashraf, J. Constructional. Steel. Res. 66, 634 (2010).

    Article  Google Scholar 

  4. 4.

    J. A. Lichtenfeld, M. C. Mataya, C. J. V. Tyne, Metall. Mater. Tran. A 37, 147 (2006).

    Article  Google Scholar 

  5. 5.

    H. N. Han, C. G. Lee, D. W. Suh, S. J. Kim, Mater. Sci. Eng. A 485, 224 (2008).

    Article  Google Scholar 

  6. 6.

    A. M. Beese and D. Mohr, Acta. Mater. 59, 2589 (2011).

    Article  Google Scholar 

  7. 7.

    T. K. Shan, S. H. Li, W. G. Zhang, Z. G. Xu, Mater. Des. 29, 1810 (2008).

    Article  Google Scholar 

  8. 8.

    J. A. R. Martinez, R. Pesci, A. Rusinek, Mater. Sci. Eng. A 528, 5974 (2011).

    Article  Google Scholar 

  9. 9.

    R. Ueji, Y. Takagi, N. Tsuchida, K. Shinagawa, Y. Tanaka, T. Mizuguchi, Mater. Sci. Eng. A 576, 14 (2013).

    Article  Google Scholar 

  10. 10.

    S. M. Hussaini, G. Krishna, A. K. Gupta, S. K. Singh, J. Manuf. Processes. 18, 151 (2015).

    Article  Google Scholar 

  11. 11.

    R. Makkouk, N. Bourgeois, J. Serri, B. Bolle, M. Martiny, M. Teaca, and G. Ferron, Eur. J. Mech. A-Solids. 27, 181 (2008).

    Article  Google Scholar 

  12. 12.

    R. Safdarian, R. M. N. Jorge, A. D. Santos, H. M. Naeini, M. P. L. Parente, Int. J. Mater. Form. 8, 293 (2015).

    Article  Google Scholar 

  13. 13.

    ASM Metal Handbook, Forming and Forging, Vol.14, pp. 1962–1963, ASM international, USA (1996).

    Google Scholar 

  14. 14.

    M. Safaeirad, M. R. Toroghinejad, and F. Ashrafizadeh, J. Mater. Process. Technol. 196, 205 (2008).

    Article  Google Scholar 

  15. 15.

    F. Djavanroodi and A. Derogar, Mater. Des. 31, 4866 (2010).

    Article  Google Scholar 

  16. 16.

    X. Li, J. Chen, L. Ye, W. Ding, and P. Song, Acta Metall. Sin. (Engl. Lett.) 26, 657 (2013).

    Article  Google Scholar 

  17. 17.

    P. Hedstrom, L. E. Lindgren, J. Almer, U. Lienert, J. Bernier, M. Terner, and M. Oden, Metall. Mater. Tran. A 48, 1039 (2009).

    Article  Google Scholar 

  18. 18.

    M. Isakov, S. Hiermaier, and V. T. Kuokkala, Metall. Mater. Tran. A 46A, 2352 (2015).

    Article  Google Scholar 

  19. 19.

    E. S. Perdahcioglu and H. J. M. Geijselaers, Acta Mater. 60, 4409 (2012).

    Article  Google Scholar 

  20. 20.

    ASTM E2218, Standard Test Method for Determining Forming Limit Curves, p.5, American Society for Testing and Materials, West Conshohocken, USA (2002).

    Google Scholar 

  21. 21.

    M. Hajian and A. Assempour, Int. J. Adv. Manuf. Technol. 76, 1757 (2015).

    Article  Google Scholar 

  22. 22.

    LS-DYNA Keyword User’s Manual Version 971, Vol 1, 424 (MAT), Livermore software technology corporation, California (2007).

  23. 23.

    K. H. Lo, D. Zeng, and C. T. Kwok, Mater. Sci. Eng. A 528, 1003 (2011).

    Article  Google Scholar 

  24. 24.

    A. Das and S. Tarafder, Int. J. Plast. 25, 2222 (2009).

    Article  Google Scholar 

  25. 25.

    W. J. Dan, W. G. Zhang, S. H. Li, and Z. Q. Lin, Comput. Mater. Sci. 40, 101 (2007).

    Article  Google Scholar 

  26. 26.

    R. Zaera, J. A.R. Martinez, A. Casado, J. F. Saez, A. Rusinek, and R. Pesci, Int. J. Plast. 29, 77 (2012).

    Article  Google Scholar 

  27. 27.

    N. Li, Y. D. Wang, W. J. Liu, Z. N. An, J. P. Liu, R. Su, J. Li, and P. K. Liaw, Acta Mater. 64, 12 (2014).

    Article  Google Scholar 

  28. 28.

    H. K. Yeddu, T. Lookman, and A. Saxena, Acta Mater. 61, 6972 (2013).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. Emadoddin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fathi, H., Emadoddin, E., Mohammadian Semnani, H.R. et al. Effect of punch speed on the formability behavior of austenitic stainless steel type 304L. Met. Mater. Int. 22, 397–406 (2016). https://doi.org/10.1007/s12540-016-5495-x

Download citation


  • metals
  • deformation
  • strain rate
  • computer simulation
  • forming limit diagram