Skip to main content
Log in

Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASTM F2792-12a, Standard Specification for Additive Manufacturing Technologies, ASTM International, Pennsylvania (2012).

  2. K. P. Monroy, J. Delgado, L. Sereno, J. Ciurana, and N. J. Hendrichs, Met. Mater. Int. 20, 873 (2014).

    Article  Google Scholar 

  3. S. Khademzadeh, N. Parvin, P. F. Bariani, and F. Mazzucato, Met. Mater. Int. 21, 1081 (2015).

    Article  Google Scholar 

  4. J. H. Jang, B. D. Joo, S. M. Mun, M. Y. Sung, and Y. H. Moon, Met. Mater. Int. 17, 167 (2011).

    Article  Google Scholar 

  5. C. Chen, Y. Wang, H. Ou, Y. He, and X. Tang, J. Clean. Prod. 64, 13 (2014).

    Article  Google Scholar 

  6. D. G. Ahn, Int. J. Precis. Eng. Manuf. 12, 925 (2011).

    Article  Google Scholar 

  7. A. J. Pinkerton, W. Wang, and L. Li, Proc. Inst. Mech. Eng. 2008 (IMechE 2008) 222, 827 (2008).

    Google Scholar 

  8. J. H. Lee, J. H. Jang, B. D. Joo, H. S. Yim, and Y. H. Moon, Trans. Nonferrous Met. Soc. China 19, s284 (2009).

    Article  Google Scholar 

  9. L. Xue, J. Chen, and S. H. Wang, Metallogr. Microstruct. 2, 67 (2013).

    Article  Google Scholar 

  10. J. D. Majumdar, A. Pinkertion, Z. Liu, I. Manna, and L. Li, Appl. Surf. Sci. 247, 373 (2005).

    Article  Google Scholar 

  11. W. Yudai, T. Haibo, F. Yanli, and W. Huaming, China J. Aeronaut. 26, 481 (2013).

    Article  Google Scholar 

  12. S. Kou, Welding Metallurgy, 2 nd ed., pp.114–116, John Wiley & Sons, New York (2003).

    Google Scholar 

  13. H. Chandler, Heat Treaters’s Guide: Practices and Procedures for Irons and Steels, 2 nd ed., pp.1–3, ASM International, Ohio (1995).

    Google Scholar 

  14. S. Oh and S. Yi, Korean J. Met. Mater. 51, 781 (2013).

    Article  Google Scholar 

  15. www.insstek.com (accessed July, 2015).

  16. J. W. Elmer, S. M. Allen, and T. W. Eagar, Metall. Trans. A 20A, 2117 (1989).

    Article  Google Scholar 

  17. S. Kou and Y. Le, Metall. Trans. A 13A, 1141 (1982).

    Article  Google Scholar 

  18. J. Brooks, C. Robino, T. Headley, S. Goods, and M. Griffith, 10 th Solid Freeform Fabr. Sym. Proc., pp. 375–382, Austin, Texas, USA (1999).

    Google Scholar 

  19. G. Laird, R. Gundlach, and K. Röhring, Abrasion -Resistant Cast Iron Handbook, pp.46–49, American Foundry Society, Illinois (2000).

    Google Scholar 

  20. D. I. Uhlenhaut, J. Kradolfer, W. Püttgen, J. F. Löffler, and P. J. Uggowitzer, Acta Mater. 54, 2727 (2006).

    Article  Google Scholar 

  21. A. Mendanha, H. Goldenstein, and C. E. Pinedo, 7 th Int. Tooling Conf., pp. 813–819, Torino, Italy (2006).

    Google Scholar 

  22. K. J. Hong, W. G. Kang, J. H. Song, I. S. Cung, and K. A. Lee, J. Kor. Ins. Met. Mater. 46, 800 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Hye Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.S., Lee, MG., Cho, YJ. et al. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process. Met. Mater. Int. 22, 143–147 (2016). https://doi.org/10.1007/s12540-016-5372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5372-7

Keywords

Navigation