Skip to main content
Log in

Novel approach for observing the asymmetrical evolution and the compositional nonuniformity of laser pulsed atom probe tomography of a single ZnO nanowire

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The characterization of ZnO nanowires is crucial for developing nanostructured devices together with related compounds and alloys with an atomic-scale regime. This study describes the effects of laser energy on the atom probe tomography analysis of a single ZnO nanowire with a high aspect ratio, diameters of 80?100 nm and lengths of 10 µm. We observed both an asymmetrical evolution in the apex morphology and the compositional nonuniformities of Zn and O ions with respect to the laser energies ranging from 5 to 40 nJ. When the higher laser illumination exposed to the ZnO nanowires, non-uniform field strength becomes noticeable especially at the laser incident side of the samples. Moreover, we measured the charge state ratios of Zn+ and Zn2+ ions as a function of the applied laser energies. Our results proved important for accurate quantitative characterization and better interpretation for the laser-pulsed atom probe tomography of ZnO-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Kim, G. W. Nam, G. S. Kim, S. P. Yoon, J.-Y. Leem, and Y. S. Kim, Korean J. Met. Mater. 51, 529 (2013).

    Google Scholar 

  2. R. Viter, A. Katoch, and S. S. Kim, Met. Mater. Int. 20, 163 (2014).

    Article  Google Scholar 

  3. T. H. C. Son, L. K. Top, N. T. D. Tri, H. T. C. Nhan, L. Q. Vinh, B. T. Phan, S. S. Kim, and L. V. Hieu, Met. Mater. Int. 20, 337 (2014).

    Article  Google Scholar 

  4. T. F. Kelly and M. K. Miller, Rev. Sci. Instrum. 73, 031101 (2007).

    Article  Google Scholar 

  5. D. J. Larson, T. Prosa, R. M. Ulfig, B. P. Geiser, and T. F. Kelly, Local Electrode Atom Probe Tomography, pp.20–38, Springer, New York (2013).

    Book  Google Scholar 

  6. C.-W. Bang, J.-B. Seol, Y. S. Yang, and C.-G. Park, Script Mater. 108, 151 (2015).

    Article  Google Scholar 

  7. J.-B. Seol, J.-E. Jung, Y.-W. Jang, and C.-G. Park, Acta Mater. 61, 558 (2013).

    Article  Google Scholar 

  8. J.-B. Seol, M. J. Yao, P. Choi, D. Raabe, and C.-G. Park, Proceeding of the 7 th Korea-China Symposium on Advanced Steel Technology: Proceeding, pp.93–96, KIM, Korea (2015).

    Google Scholar 

  9. W. Guo, E. A. Jägle, P.-P. Choi, J. Yao, A. Kostka, J. M. Schneider, and D. Raabe, Phys. Rev. Lett. 113, 035501 (2014).

    Article  Google Scholar 

  10. J. B. Seol, N. S. Lim, B. H. Lee, L. Renaud, and C. G. Park, Met. Mater. Int. 17, 413 (2011).

    Article  Google Scholar 

  11. J.-B. Seol, B.-H. Lee, P. Choi, S.-G. Lee, and C.-G. Park, Ultramicroscopy 132, 248 (2013).

    Article  Google Scholar 

  12. D. J. Larson, D. T. Foord, A. K. Petford-Long, T. C. Anthony, I. M. Rozdilsky, A. Cerezo, and G. D. W. Smith, Ultramicroscopy 79, 287 (1999).

    Article  Google Scholar 

  13. M. Müller, G. D.W. Smith, B. Gault, and C. R. M Grovenor, J. Appl. Phys. 111, 064908 (2012).

    Article  Google Scholar 

  14. T. F. Kelly, A. Vella, J. H. Bunton, J. Houard, E. P. Silaeva, J. Bogdanowicz, and W. Vandervorst, Current Opin. Solid State Mater. Sci. 18, 81 (2014).

    Article  Google Scholar 

  15. G. Sha, A. Cerezo, and G. D. W. Smith, Appl. Phys. Lett. 92, 4 (2008).

    Article  Google Scholar 

  16. A. Vella, B. Mazumber, G. Da Costa, and B. Deconihout, J. Appl. Phys. 110, 4 (2011).

    Article  Google Scholar 

  17. J. Hourd, A. Vella, F. Vurpillot, and B. Deconihout, Phys. Rev. B 84, 3 (2011).

    Google Scholar 

  18. A. Vella, J. Houard, F. Vurpillot, and B. Deconihout, Appl. Surf. Sci. 258, 9202 (2012).

    Article  Google Scholar 

  19. A. Shariq, S. Mutas, K. Wedderhoff, C. Klein, H. Hortenbach, S. Teichert, P. Kücher, and S. S. A. Gerstl, Ultramicroscopy, 109, 472 (2009).

    Article  Google Scholar 

  20. F. Vurpillot, B. Gault, B.P. Geiser, and D. J. Larson, Ultramicroscopy 132, 19 (2013).

    Article  Google Scholar 

  21. D. J. Larson, B. P. Geiser, T. J. Prosa, and T. F. Kelly, Microsc. Microanal. 18, 953 (2012).

    Article  Google Scholar 

  22. F. Tang, B. Gault, S. P. Ringer, and J. M. Cairney, Ultramicroscopy 110, 836 (2010).

    Article  Google Scholar 

  23. D. W. Saxey, Ultramicroscopy 111, 473 (2011).

    Article  Google Scholar 

  24. M. Müller, D. W. Saxey, G. D. W. Smith, and B. Gault, Ultramicroscopy 111, 487 (2011).

    Article  Google Scholar 

  25. A. Devaraj, R. Colby, W. P. Hess, D. E. Perea, and S. Thevuthasan, J. Phys. Chem. Lett 4, 993 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo-Hwa Kim or Chan-Gyung Park.

Additional information

Jae-Bok Seol and Young-Tae Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seol, JB., Kim, YT., Kim, BH. et al. Novel approach for observing the asymmetrical evolution and the compositional nonuniformity of laser pulsed atom probe tomography of a single ZnO nanowire. Met. Mater. Int. 22, 34–40 (2016). https://doi.org/10.1007/s12540-015-5360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5360-3

Keywords

Navigation