Skip to main content
Log in

Preparation of Zn(BH4)2 and diborane and hydrogen release properties of Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15)

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Zn(BH4)2 was prepared by milling ZnCl2 and NaBH4 in a planetary ball mill under Ar atmosphere, and Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15) samples were prepared. Diborane (B2H6) and hydrogen release characteristics of the Zn(BH4)2 and Zn(BH4)2+xMgH2 samples were studied. The samples synthesized by milling ZnCl2 and NaBH4 contained Zn(BH4)2 and NaCl, together with small amounts of ZnCl2 and NaBH4. We designated these samples as Zn(BH4)2(+NaCl). The weight loss up to 400 °C of the Zn(BH4)2(+NaCl) sample synthesized by milling 4 h was 11.2 wt%. FT-IR analysis showed that Zn(BH4)2 was formed in the Zn(BH4)2(+NaCl) samples. MgH2 was also milled in a planetary ball mill, and mixed with the Zn(BH4)2(+NaCl) synthesized by milling for 4 h in a mortar and pestle. The weight loss up to 400 °C of Zn(BH4)2(+NaCl)+MgH2 was 8.2 wt%, corresponding to the weight % of diborane and hydrogen released from the Zn(BH4)2(+NaCl)+MgH2 sample, with respect to the sample weight. DTA results of Zn(BH4)2(+NaCl)+xMgH2 showed that the decomposition peak of Zn(BH4)2 was at about 61 °C, and that of MgH2 was at about 370-389 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Y. Song, Y. J. Kwak, S. H. Lee, and H. R. Park, Korean J. Met. Mater. 51, 119 (2013).

    Google Scholar 

  2. M. Y. Song, Y. J. Kwak, S. H. Lee, and H. R. Park, Met. Mater. Int. 21, 208 (2015).

    Article  Google Scholar 

  3. M. Y. Song, Y. J. Kwak, S. H. Lee, and H. R. Park, Met. Mater. Int. 19, 879 (2013).

    Article  Google Scholar 

  4. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967).

    Article  Google Scholar 

  5. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem. 7, 2254 (1968).

    Article  Google Scholar 

  6. E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982).

    Article  Google Scholar 

  7. Z. Li, X. Liu, L. Jiang, and S. Wang, Int. J. Hydrogen Energy, 32, 1869 (2007).

    Article  Google Scholar 

  8. J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983).

    Article  Google Scholar 

  9. Z. Li, X. Liu, Z. Huang, L. Jiang, and S. Wang, Rare Metals 25(6)(Supplement 1), 247 (2006).

    Article  Google Scholar 

  10. A. Züttel, S. Rentsch, P. Fisher, P. Wenger, P. Sudan, Ph. Mauron, and Ch. Emmenegger, J. Alloys Compd. 356–357, 515 (2003).

    Article  Google Scholar 

  11. S. Orimo, Y. Nakamori, and A. Züttel, Mater. Sci. Eng. B 108, 51 (2004).

    Article  Google Scholar 

  12. H. Hagemann, S. Gomes, G. Renaudin, and K. Yvon, J. Alloys Compd. 363, 129 (2004).

    Article  Google Scholar 

  13. G. Renaudin, S. Gomes, H. Hagemann, L. Keller, and K. Yvon, J. Alloys Compd. 375, 98 (2004).

    Article  Google Scholar 

  14. M. Yoshino, K. Komiya, Y. Takahashi, Y. Shinzato, H. Yukawa, and M. Morinaga, J. Alloys Compd. 404–406, 185 (2005).

    Article  Google Scholar 

  15. S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata, and A. Züttel, J. Alloys Compd. 404–406, 427 (2005).

    Article  Google Scholar 

  16. J. K. Kang, S. Y. Kim, Y. S. Han, R. P. Muller, and W. A. Goddard III, Appl. Phys. Lett. 87, 111904 (2005).

    Article  Google Scholar 

  17. R. S. Kumar and A. L. Cornelius, Appl. Phys. Lett. 87, 261916 (2005).

    Article  Google Scholar 

  18. Y. Nakamori, K. Miwa, A. Ninomiya, H.-W. Li, N. Ohba, S. Towata, A. Züttel, and S. Orimo, Phys. Rev. B 74, 045126 (2006).

    Article  Google Scholar 

  19. Y. Nakamori, H.-W. Li, K. Miwa, S. Towata, and S. Orimo, Mater. Trans. 47, 1898 (2006).

    Article  Google Scholar 

  20. T. Nakagawa, T. Ichikawa, Y. Kojima, and H. Fujii, Materials Transactions, 48, 556 (2007).

    Article  Google Scholar 

  21. V. I. Mikheeva, N. N. Naltseva, and L. S. Alekseeva, Zh. Neorg. Khim. 13, 1301 (1968).

    Google Scholar 

  22. E. Jeon and Y. W. Cho, J. Alloys Compd. 422, 273 (2006).

    Article  Google Scholar 

  23. E. Jeon and Y. W. Cho, Transactions of the Korean Hydrogen and New Energy Society 16, 262 (2005).

    Google Scholar 

  24. Y. J. Kwak, S. H. Lee, H. R. Park, and M. Y. Song, Korean J. Met. Mater. 51, 607 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Youp Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, Y.J., Kwon, S.N. & Song, M.Y. Preparation of Zn(BH4)2 and diborane and hydrogen release properties of Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15). Met. Mater. Int. 21, 971–976 (2015). https://doi.org/10.1007/s12540-015-4604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4604-6

Keywords

Navigation