Skip to main content
Log in

Reaction and interfacial structures between Ag paste with tellurite glass frits and Si wafer for solar cells

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Tellurite glass frits with different SiO2/PbO ratios were produced and characterized for use in the Ag paste in the electrodes of polycrystalline Si solar cells. The thermophysical properties of the frits were determined using differential scanning calorimetry, and their fusion behaviors were studied using hot-stage microscopy. Glass frits in the Ag pastes reacted with the Si wafer. The interfacial structure between the Ag electrodes and the Si wafer was observed using scanning electrode microscopy. Depending on their compositions, the glass frits in the Ag paste exhibited different contact behaviors with the Si wafer substrate. This led to different interfacial structures between Ag electrodes and the Si wafer. The morphology of the interfacial structure significantly affected the electrical properties of the resulting Si solar cells. The viscosity of the fused glass frits at temperatures above their flow-point temperature affected the degree of Si wafer etching and the distribution of recrystallites on the n+ emitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Rane, T. Seth, G. J. Phatak, and D. P. Amalnerkar, J. Electron. Mater. 15, 103 (2004).

    Article  Google Scholar 

  2. M. Prudenziati, L. Moro, B. Morten, F. Sirotti, and L. Sardi, Act. Passive Electron. Compon. 13, 133 (1989).

    Article  Google Scholar 

  3. S. Hwang, S. Lee, and H. Kim, J. Electroceram. 23, 351 (2009).

    Article  Google Scholar 

  4. S. Y. Lee, S. H. Jin, S. M. Kim, and J. W. Kim, Met. Mater. Int. 20, 695 (2014).

    Article  Google Scholar 

  5. K. Hong, S. Cho, J. Huh, H. J. Park, and J. W. Jeong, Met. Mater. Int. 15, 307 (2009).

    Article  Google Scholar 

  6. Y. Zhang, Y. Yang, J. Zheng, W. Hua, and G. Chen, Mater. Chem. Phys. 114, 319 (2009).

    Article  Google Scholar 

  7. Y. C. Shih, Y. H. Lin, J. P. You, and F. G. Shi, J. Electron. Mater. 42, 410 (2013).

    Article  Google Scholar 

  8. Q. Che, H. Yang, L. Lu, and Y. Wang, Appl. Energy 112, 657 (2013).

    Article  Google Scholar 

  9. D. Kim and H. Kim, J. Am. Ceram. Soc. 96, 774 (2013).

    Article  Google Scholar 

  10. J. G. Bai, Z. Z. Zhang, J. N. Calata and G. Lu, IEEE Trans. Compon. Packag. Technol. 29, 589 (2006).

    Article  Google Scholar 

  11. Y. Chiang, S. Wang, C. Lu, H. Lin, Lu. Wang, and Y. Ding, J. Electroceram. 31, 109 (2013).

    Article  Google Scholar 

  12. M. Eberstein, H. F. Windisch, M. Peschel, J. Schilm, T. Seuthe, M. Wenzel, C. Kretzschmar, U. Partsch, Energy Proc. 27, 522 (2012).

    Article  Google Scholar 

  13. S. Kim, S. Park, Y. D. Kim, H. Boo, H. Kim, S. Bae, H. Park, S. J. Tark, and D. Kim, Met. Mater. Int. 19, 1333 (2013).

    Article  Google Scholar 

  14. M. B. Volf, Chemical Approach to Glass, pp.554–556, Elsevier, Amsterdam (1984).

    Google Scholar 

  15. A. Kaur, A. Khanna, C. Pesquera, F. González, and V. Sathe, J. Non-Cryst. Solids 356, 864 (2010).

    Article  Google Scholar 

  16. B. V. R. Chowdari and P. P. Kumari, J. Non-Cryst. Solids 197, 31 (1996).

    Article  Google Scholar 

  17. K. J. Hubbard and D. G. Schlom, J. Mater. Res 11, 2757 (1996).

    Article  Google Scholar 

  18. M. J. Pascual, A. Durán, and M. O. Prado, Phys. Chem. Glasses 46, 512 (2005).

    Google Scholar 

  19. D. Ležal, J. Hoák, S. Karamazov, A. Skenár, and J. Navrátil, Phys. Chem. Glasses 42, 324 (2001).

    Google Scholar 

  20. H. Shim, S. Cho, H. Yie, and H. Kim, Ceram. Int. 41, 2196 (2015).

    Article  Google Scholar 

  21. M. A. P. Silva, Y. Messaddeq, S. J. L. Ribeiro, M. Poulain, F. Villain, and V. Briois, J. Phys. Chem. Solids 62, 1055 (2001).

    Article  Google Scholar 

  22. X. Pi, J. Chen, X. Cao, Z. Fu, L. Wang, and Q. Zhang, J. Synthetic Crystals 42, 1390 (2013).

    Google Scholar 

  23. B. Shanmugavelu and V. V. R. K. Kumar, J. Am. Ceram. Soc. 95, 2891 (2012).

    Article  Google Scholar 

  24. H. R. Fernandes, D.U. Tulyaganov, A. Goel, M. J. Ribeiro, M. J. Pascual, and J. M. F. Ferreira, J. Eur. Ceram. Soc. 30, 2017 (2010).

    Article  Google Scholar 

  25. N. Nagedra, U. Ramamurty, T. T. Goh, and Y. Li, Acta Mater. 48, 2063 (2000).

    Google Scholar 

  26. J. De, A. M. Umarji, and K. Chattopadhyay, Mater. Sci. Eng. A 449, 1062 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungsun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S., Cho, S., Lee, J. et al. Reaction and interfacial structures between Ag paste with tellurite glass frits and Si wafer for solar cells. Met. Mater. Int. 21, 686–691 (2015). https://doi.org/10.1007/s12540-015-4567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4567-7

Keywords

Navigation