Metals and Materials International

, Volume 21, Issue 4, pp 758–764 | Cite as

Effect of heat treatment on martensitic transformation of Ni47Mn40Sn13 ferromagnetic shape memory alloy prepared by mechanical alloying

  • A. Ghotbi Varzaneh
  • P. Kameli
  • V. R. Zahedi
  • F. Karimzadeh
  • H. Salamati


In this paper, an attempt has been made to synthesis of the nanostructured Ni47Mn40Sn13 ferromagnetic shape memory alloy by ball milling of Ni, Mn and Sn powder mixture. The structure and magnetic evaluation of samples were investigated by X-ray diffraction, transmission electron microscopy, differential scanning calorimetry and AC susceptibility measurements. The results showed that after 20 hours of ball milling, the nanostructured L21-Ni47Mn40Sn13 powder was formed with an average particle size of 5 nm. In the as-milled specimen, the martensitic transformation (MT) was not observed. This was basically due to the atomic disordering and large lattice strain in nanoparticles. However, the annealing of milled specimens at temperatures above 1023K for 16 hours led to the occurrence of MT in nanostructured Ni47Mn40Sn13 powders. We also calculated t-he activation energy of MT by using Kissinger method and it was estimated to be about 52 kJ mol−1. The results demonstrate that a combination of MA and subsequent heat treatment has the potential to produce Ni-Mn-Sn magnetic shape memory.


shape memory alloys mechanical alloying/milling annealing phase transformation X-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, and T. Kanomata, Nature 439, 957(2006).CrossRefGoogle Scholar
  2. 2.
    Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004).CrossRefGoogle Scholar
  3. 3.
    O. Heczko and L. Straka, Mater. Sci. Eng. A 378, 394 (2004).CrossRefGoogle Scholar
  4. 4.
    T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Nat. Mater. 4, 450 (2005).CrossRefGoogle Scholar
  5. 5.
    R. Saha and A. K. Nigam, Physica B 448, 263 (2014).CrossRefGoogle Scholar
  6. 6.
    Z. Liu, Z. Wu, X. Ma, W. Wang, Y. Liu, and G. Wu, J. Appl. Phys. 110, 013916 (2011).CrossRefGoogle Scholar
  7. 7.
    S. Yu, L. Ma, G. Liu, Z. Liu, J. Chen, Z. Cao, G. Wu, B. Zhang, and X. Zhang, Appl. Phys. Lett. 90, 242501 (2007).CrossRefGoogle Scholar
  8. 8.
    W. Cai, L. Gao and Z. Gao, J. Mater. Sci. 42, 9216 (2007).CrossRefGoogle Scholar
  9. 9.
    T. Krenke, E. Duman, M. Acet, X. Moya, L. Mañosa, and A. Planes, J. Appl. Phys. 102, 033903 (2007).CrossRefGoogle Scholar
  10. 10.
    R. Das, A. Perumal, and A. Srinivasan, Physica B 448, 327 (2014).CrossRefGoogle Scholar
  11. 11.
    L. Mañosa, D. González-Alonso, A. Planes, E. Bonnot, M. Barrio, J.-L. Tamarit, S. Aksoy, and M. Acet, Nat. Mater. 9, 478 (2010).CrossRefGoogle Scholar
  12. 12.
    V. Sánchez-Alarcos, J. Pérez-Landazábal, V. Recarte, I. Lucia, J. Vélez, and J. Rodríguez-Velamazán, Acta Mater. 61, 4676 (2013).CrossRefGoogle Scholar
  13. 13.
    Q. Meng, Y. Rong, and T. Hsu, Phys. Rev. B 65, 174118 (2002).CrossRefGoogle Scholar
  14. 14.
    B. Tian, F. Chen, Y. Tong, L. Li, Y. Zheng, Y. Liu, and Q. Li, J. Alloys Compd. 509, 4563 (2011).CrossRefGoogle Scholar
  15. 15.
    B. Tian, F. Chen, Y. Liu, and Y. Zheng, Intermetallics 16, 1279 (2008).CrossRefGoogle Scholar
  16. 16.
    Q. Tao, Z. Han, J. Wang, B. Qian, P. Zhang, X. Jiang, D. Wang, and Y. Du, AIP Advances 2, 042181 (2012).CrossRefGoogle Scholar
  17. 17.
    H. Zheng, W. Wang, S. Xue, Q. Zhai, J. Frenzel, and Z. Luo, Acta Mater. 61, 4648 (2013).CrossRefGoogle Scholar
  18. 18.
    S. E. Muthu, N. R. Rao, M. M. Raja, D. R. Kumar, D. M. Radheep, and S. Arumugam, J. Phys. D: Appl. Phys. 43, 425002 (2010).CrossRefGoogle Scholar
  19. 19.
    A. Planes, L. Manosa, and M. Acet, J. Phys.: Condens. Matter 21, 233201 (2009).Google Scholar
  20. 20.
    T. Waitz, V. Kazykhanov, and H. Karnthaler, Acta Mater. 52, 137 (2004).CrossRefGoogle Scholar
  21. 21.
    H. Xuan, K. Xie, D. Wang, Z. Han, C. Zhang, B. Gu, and Y. Du, Appl. Phys. Lett. 92, 242506 (2008).CrossRefGoogle Scholar
  22. 22.
    S. Ma, H. Xuan, C. Zhang, L. Wang, Q. Cao, D. Wang, and Y. Du, Appl. Phys. Lett. 97, 052506 (2010).CrossRefGoogle Scholar
  23. 23.
    H. Xuan, Y. Deng, D. Wang, C. Zhang, Z. Han, and Y. Du, J. Phys. D: Appl. Phys. 41, 215002 (2008).CrossRefGoogle Scholar
  24. 24.
    Z. Ren, S. Li, and H. Luo, Physica B 405, 2840 (2010).CrossRefGoogle Scholar
  25. 25.
    D. Cong, S. Roth, and L. Schultz, Acta Mater. 60, 5335 (2012).CrossRefGoogle Scholar
  26. 26.
    M. Kök and Y. Aydogdu, Thermochim. Acta 548, 51 (2012).CrossRefGoogle Scholar
  27. 27.
    H. E. Kissinger, Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
  28. 28.
    H. Zheng, D. Wu, S. Xue, J. Frenzel, G. Eggeler, and Q. Zhai, Acta Mater. 59, 5692 (2011).CrossRefGoogle Scholar
  29. 29.
    S. Dwevedi, J. Alloys Compd. 574, 188 (2013).CrossRefGoogle Scholar
  30. 30.
    H. Xuan, S. Ma, Q. Cao, D. Wang, and Y. Du, J. Alloys Compd. 509, 5761 (2011).CrossRefGoogle Scholar
  31. 31.
    M. Ye, A. Kimura, Y. Miura, M. Shirai, Y. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Ueda, and K. Kobayashi, Phys. Rev. Lett. 104, 176401 (2010).CrossRefGoogle Scholar
  32. 32.
    A. Vasiliev, O. Heczko, O. Volkova, T. Vasilchikova, T. Voloshok, K. Klimov, W. Ito, R. Kainuma, K. Ishida, and K. Oikawa, J. Phys. D: Appl. Phys. 43, 055004 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • A. Ghotbi Varzaneh
    • 1
  • P. Kameli
    • 1
  • V. R. Zahedi
    • 1
  • F. Karimzadeh
    • 2
  • H. Salamati
    • 1
  1. 1.Department of PhysicsIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations