Skip to main content
Log in

Optimization of hot working parameters of as-forged Nitinol 60 shape memory alloy using processing maps

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The hot deformation behavior of as-forged Nitinol 60 alloy (60 wt% Ni, 40 wt% Ti) was studied over the ranges of temperature, 650–850 °C, and strain rate, 0.01–1 s−1, using isothermal constant strain rate compression tests in a Gleeble-3500 simulator. The processing maps, based on the dynamic materials model, were developed to optimize the hot working parameters. The results show that the deformation parameters have a marked effect on the power dissipation efficiency and the instability parameter. A single unstable region (650–775 °C, 0.037–1 s−1), associated with flow localization and/or adiabatic shear, is detected from the processing map. This should be avoided in hot working process. The optimized hot working conditions correspond to 680–790 °C, 0.01–0.025 s−1 with peak efficiency of 0.45 at 720 °C, 0.01 s−1, and 820–850 °C, 0.1–1 s−1 with peak efficiency of 0.5 at 850 °C, 1 s−1. Microstructure observations indicate that the main deformation mechanism of optimized domains involves dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Adharapurapu, F. C. Jiang, and K. S. Vecchio, Mater. Sci. Eng. A 527, 1665 (2010).

    Article  Google Scholar 

  2. M. Morakabati, Sh. Kheirandish, M. Aboutalebi, A. Karimi Taheri, and S. M. Abbasi, J. Alloys Compd. 499, 57 (2010).

    Article  Google Scholar 

  3. H. Zhang, Y. He, X. Liu, and J. Xie, Acta Metall. Sin. 43, 930 (2007).

    Google Scholar 

  4. W. H. Zhang and S. H. Zhang, Acta Metall. Sin. 42, 1036 (2006).

    Google Scholar 

  5. Y. V. R. K. Prasad and T. Seshacharyulu, Int. Mater. Rev. 43, 243 (1998).

    Article  Google Scholar 

  6. N. Srinivasan, Y. V. R. K. Prasad, and P. Rama Rao, Mater. Sci. Eng. A 476, 146 (2008).

    Article  Google Scholar 

  7. X. Li, S. Q. Lu, M. W. Fu, K. L. Wang, and X. J. Dong, J. Mater. Process. Technol. 210, 370 (2010).

    Article  Google Scholar 

  8. S. Q. Lu, X. Li, K. L. Wang, X. J. Dong, and M. W. Fu, Trans. Nonferrous Met. Soc. China. 23, 353 (2013).

    Article  Google Scholar 

  9. K. L. Wang, S. Q. Lu, M. W. Fu, X. Li, and X. J. Dong, Mater. Sci. Eng. A 527, 7279 (2010).

    Article  Google Scholar 

  10. K. L. Wang, S. Q. Lu, M. W. Fu, X. Li, and X. J. Dong, Mater. Charact. 60, 492 (2009).

    Article  Google Scholar 

  11. M. Srinivasan, C. Loganathan, R. Narayanasamy, V. Senthilkumar, Q. B. Nguyen, and M. Gupta, Mater. Des. 47, 449 (2013).

    Article  Google Scholar 

  12. S. Venugopal, P. V. Sivaprasad, M. Vasudevan, S. L. Mannan, S. K. Jha, P. Pandey, and Y. V. R. K. Prasad, J. Mater. Process. Technol. 59, 343 (1995).

    Article  Google Scholar 

  13. M. Morakabatia, M. Aboutalebi, Sh. Kheirandish, A. Karimi Taheri, and S. M. Abbasi, Intermetallics 19, 1399 (2011).

    Article  Google Scholar 

  14. S. J. Wang, X. J. Mi, X. Q. Yin, and Y. F. Li, Rare Metals 31, 323 (2012).

    Article  Google Scholar 

  15. A. Biswas, G. Singh, S. K. Sarkar, M. Krishnan, and U. Ramamurty, Intermetallics 54, 69 (2014).

    Article  Google Scholar 

  16. R. R. Adharapurapu and K. S. Vecchio, Exp. Mech. 47, 365 (2007).

    Article  Google Scholar 

  17. D. J. Clingman, F. T. Calkins, and J. P. Smith, The Boeing Company, Smart Struct. Mater. 5053, 219 (2003).

    Google Scholar 

  18. K. Otsuka and X. Ren, Prog. Mater Sci. 50, 511 (2005).

    Article  Google Scholar 

  19. K. Dehghani and A. A. Khamei, Mater. Sci. Eng. A 527, 684 (2010).

    Article  Google Scholar 

  20. A. A. Khamei and K. Dehghani, Mater. Chem. Phys. 123, 269 (2010).

    Article  Google Scholar 

  21. A. A. Khamei and K. Dehghani, Metall. Mater. Trans. A 41A, 2595 (2010).

    Article  Google Scholar 

  22. Y. Han, G. W. Liu, D. N. Zou, J. P. Sun, and G. J. Qiao, Mater. Sci. Technol. 29, 300 (2013).

    Article  Google Scholar 

  23. G. W. Liu, Y. Han, Z. Q. Shi, J. P. Sun, D. N. Zou, and G. J. Qiao, Mater. Des. 53, 662 (2014).

    Article  Google Scholar 

  24. D. X. Wen, Y. C. Lin, H. B. Li, X. M. Chen, J. Deng, and L. T. Li, Mater. Sci. Eng. A 591, 183 (2014).

    Article  Google Scholar 

  25. M. Winning, Scripta Mater. 58, 85 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqiang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, X., Lu, S., Wang, K. et al. Optimization of hot working parameters of as-forged Nitinol 60 shape memory alloy using processing maps. Met. Mater. Int. 21, 726–733 (2015). https://doi.org/10.1007/s12540-015-4485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4485-8

Keywords

Navigation