Skip to main content
Log in

Development of laser beam welding transverse-varestraint test for assessment of solidification cracking susceptibility in laser welds

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In order to quantitatively evaluate the solidification cracking susceptibility in laser welds of type 310S stainless steel, a transverse-Varestraint testing system using a laser beam welding apparatus was newly constructed. The timing-synchronization between the laser oscillator, welding robot and hydraulic pressure devices was established by employing high-speed camera observations together with electrical signal control among the three components. Moreover, the yoke-drop time measured by the camera was used to prevent underestimation of the crack length. The laser beam melt-run welding used a variable welding speed from 10.0 to 40.0 mm/s, while the gas tungsten arc welding varied the welding speed from 1.67 to 5.00 mm/s. As the welding speed increased from 1.67 to 40.0mm/s, the solidification brittle temperature range of type 310S stainless steel welds was reduced from 146 to 120 K. It follows that employing the laser beam welding process mitigates the solidification cracking susceptibility for type 310S stainless steel welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Jang, B. D. Joo, C. J. V. Tyne, and Y. H. Moon, Met. Mater. Int. 19, 497 (2013).

    Article  Google Scholar 

  2. C. A. Biffi, P. Bassani, M. Carnevale, N. Lecis, A. Loconte, B. Previtali, and A. Tuissi, Met. Mater. Int. 20, 83 (2014).

    Article  Google Scholar 

  3. I. H. Kim, K. H. Kim, Y. H. Cho, and S. H. Lee, Korean J. Met. Mater. 51, 437 (2013).

    Article  Google Scholar 

  4. T. Bollinghaus, A. Gumenyuk, and V. Quiroz, Hot Cracking Phenomena in Welds III (eds. J. C. Lippold, T. Bollinghaus and C. E. Cross), p.103, Springer, Berlin (2011).

  5. M. F. Gittos, S. M. I. Birch, and R. J. Pargeter, Hot Cracking Phenomena in Welds III (eds. J. C. Lippold, T. Bollinghaus and C. E. Cross), p.225, Springer, Berlin (2011).

  6. J. C. Lippold and D. J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels. p.141, A John Wiley & Sons, New York (2005).

    Google Scholar 

  7. S. Kou, Welding metallurgy, 2nd ed., p.170, A John Wiley & Sons, New York (2003).

    Google Scholar 

  8. T. Ogawa and E. Tsunetomi, Weld. J. 61, 82s (1982).

  9. J. C. Lippold and W. F. Savage, Weld. J. 61, 388s (1982).

  10. S. Katayama, Welding International 15, 627 (2001).

    Article  Google Scholar 

  11. C. E. Cross, Hot Cracking Phenomena in Welds (eds. T. Bollinghaus and H. Herold), p.3, Springer, Berlin (2005).

  12. C. E. Cross and N. Coniglio, Hot Cracking Phenomena in Welds II (eds. T. Bollinghaus, H. Herold, C. E. Cross, and J. C. Lippold) p.39, Springer, Berlin (2008).

  13. K. Kadoi, A. Fujinaga, M. Yamamoto, and K. Shinozaki, Weld. World. 57, 383 (2013).

    Google Scholar 

  14. J. C. Lippold, Weld. J. 73, 129s (1994).

  15. S. A. David, J. M. Vitek, and T. L. Hebble, Weld. J. 66, 289s (1987).

  16. L. A. Weeter, C. E. Albright, and W. H. Jones, Weld. J. 63, 51s (1986).

  17. J. M. Vitek, A. Dasgupta, and S. A. David, Metall. Trans. A 14A, 1833 (1983).

    Article  Google Scholar 

  18. J. W. Elmer, S. M. Allen, and T. W. Eagar, Metall. Trans. A 20A, 2117 (1989).

    Article  Google Scholar 

  19. S. Fukumoto and W. Kurz, ISIJ Int. 37, 677 (1997).

    Article  Google Scholar 

  20. F. Matsuda, H. Nakagawa, and T. Ueyama, Transactions of JWRI 16, 103 (1987).

    Google Scholar 

  21. C. E. Cross, N. Coniglio, E. M. Westin, and A. Gumenyuk, Hot Cracking Phenomena in Welds III (eds. J. C. Lippold, T. Bollinghaus and C. E. Cross) p.103, Springer, Berlin (2011).

  22. K. Saida, Y. Nishijima, H. Ogiwara, and K. Nishimoto, Quarterly Journal of Japan Welding Society 31, 157 (2013).

    Article  Google Scholar 

  23. V. Quiroz, A. Gumenyuk, and M. Rethmeier, The Journal of Strain Analysis for Engineering Design 47, 587 (2012).

    Article  Google Scholar 

  24. K. Nishimoto and H. Mori, Sci. Technol. Adv. Mat. 5, 231 (2004).

    Article  Google Scholar 

  25. P. Wen, K. Shinozaki, M. Yamamoto, Y. Senda, T. Tamura, and N. Nemoto, Quarterly Journal of Japan Welding Society 27, 134 (2009).

    Article  Google Scholar 

  26. K. Shinozaki, P. Weng, M. Yamamoto, and K. Kadoi, Transactions of JWRI 39, 136 (2010).

    Google Scholar 

  27. W. F. Savage and C. D. Lundin, Weld. J. 44, 433s (1965).

  28. W. F. Savage and C. D. Lundin, Weld. J. 45, 497s (1966).

  29. A. C. Lingenfelter, Weld. J. 51, 430s (1972).

  30. T. Senda, F. Matsuda, G. Takano, K. Watanabe, T. Kobayashi, and T. Matsuzaka, Quarterly Journal of Japan Welding Society 41, 709 (1972).

    Article  Google Scholar 

  31. T. Senda, F. Matsuda, and G. Takano, Quarterly Journal of Japan Welding Society 42, 48 (1973).

    Article  Google Scholar 

  32. Y. Arata, F. Matsuda, and S. Saruwatari, Transactions of JWRI 3, 79 (1974).

    Google Scholar 

  33. F. Matsuda, H. Nakagawa, S. Ogata, and S. Katayama, Transactions of JWRI 7, 59 (1978).

    Google Scholar 

  34. K. Saida, H. Matsushita, K. Nishimoto, K. Kiuch, and J. Nakayama, Sci. Technol. Weld. Joi. 18, 616 (2013).

    Article  Google Scholar 

  35. Destructive tests on welds in metallic materials-hot cracking tests for weldments-arc welding processes-International Standard ISO 17641-1.

  36. J. C. M. Farrar, Hot Cracking Phenomena in Welds (eds. T. Bollinghaus and H. Herold), p.291, Springer, Berlin (2005).

  37. J. C. Lippold, Hot Cracking Phenomena in Welds (eds. T. Bollinghaus and H. Herold), p.271, Springer, Berlin (2005).

  38. H. Herold, A. Pchennikov, and M. Streitenberger, Hot Cracking Phenomena in Welds (eds. T. Bollinghaus and H. Herold), p.328, Springer, Berlin (2005).

  39. F. Matsuda, H. Nakagawa, K. Nakata, and H. Okada, Transactions of JWRI 8, 85 (1979).

    Google Scholar 

  40. F. Matsuda, H. Nakagawa, K. Nakata, H. Kohmoto, and Y. Honda, Transactions of JWRI 12, 65 (1983).

    Google Scholar 

  41. M. Wolf, H. Schobbert, and T. Bollinghaus, Hot Cracking Phenomena in Welds (eds. T. Bollinghaus and H. Herold), p.245, Springer, Berlin (2005).

  42. K. Kromm and T. Kannengieber, Hot Cracking Phenomena in Welds II (eds. T. Bollinghaus, H. Herold, C. E. Cross and J. C. Lippold), p.127, Springer, Berlin (2008).

  43. K. Saida, Y. Nishijima, K. Nishimoto, K. Kiuchi, and J. Nakayama, Weld. J. 92, 322s (2013).

  44. K. Nishimoto, K. Saida, K. Kiuch, and J. Nakayama, Hot Cracking Phenomena in Welds III (eds. J. C. Lippold, T. Bollinghaus and C. E. Cross), p.183, Springer, Berlin (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Joon Chun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, EJ., Baba, H., Nishimoto, K. et al. Development of laser beam welding transverse-varestraint test for assessment of solidification cracking susceptibility in laser welds. Met. Mater. Int. 21, 543–553 (2015). https://doi.org/10.1007/s12540-015-4394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4394-x

Keywords

Navigation