Skip to main content

Synthesis and room-temperature NO2 sensing properties of Sb2O5 nanowires

Abstract

The sensing properties of Sb2O5 nanowires are reported for the first time. By varying the heating temperature of a mixture of Sb and Bi powders, we have successfully prepared Sb2O5 nanowires. For nanowires grown at 600°C, the stem is mainly comprised of a monoclinic Sb2O5 phase, with a trace amount of a monoclinic Bi2O3 phase. The existence of Au nanoparticles at the tips suggests that the 600°C-synthesized nanowires are mainly grown via a vapor-liquid-solid process. The 500°C-grown products comprise a small amount of 1D nanostructures, whereas the 700°C-grown product does not exhibit sufficiently thin 1D nanostructures. A representative A survey XPS spectrum exhibits several peaks, including Sb 3p, Sb 3d, O 1s, C 1s, Bi 4f, and Sb 4d. At room temeperature, the sensor response, response time, and recovery time of the nanowires were measured to be 1.20, 2104 s, and 6579 s, respectively. Sensor measurements employing NO2 gas indicate that the Sb2O5 nanowires synthesized in this work have potential for use as a room-temperature NO2 chemical gas sensors.

This is a preview of subscription content, access via your institution.

References

  1. J. Zhao, X. Wang, C. Liu, X. Xu, and Y. Li, Powder Technology 183, 220 (2008).

    Article  Google Scholar 

  2. H. M. Xiong, J. S. Chen, and D. M. Li, J. Mater. Chem. 13, 1994 (2003).

    Article  Google Scholar 

  3. R. Nilsson and A. Andersson, Ind. Eng. Chem. Res. 36, 5207 (1997).

    Article  Google Scholar 

  4. W. A. Badawy, Thin Solid Films 186, 59 (1990).

    Article  Google Scholar 

  5. Y. Ahn, S. W. Ryu, J. H. Lee, J. W. Park, G. H. Kim, Y. S. Kim, J. Heo, C. S. Hwang, and H. J. Kim, J. Appl. Phys. 112, 104105 (2012).

    Article  Google Scholar 

  6. H. Sato, K. Kondo, S. Tsuge, H. Ohtani, and N. Sato, Polym. Degrad. Stab. 62, 41 (1998).

    Article  Google Scholar 

  7. Y. S. Ahn, K. H. Yoon, and E. S. Kim, Ferroelectrics 262, 985 (2001).

    Article  Google Scholar 

  8. R. J. Watts, M. S. Wyeth, D. D. Finn, and A. L. Teel, J. App. Electrochem. 38, 31 (2008).

    Article  Google Scholar 

  9. V. A. Burmistrov, V. M. Chernov, P. I. Valeev, and N. E. Adrianova, Inorg. Mater. 34, 471 (1998).

    Google Scholar 

  10. P. Yang, R. Yan, and M. Fardy, Nano Lett. 10, 1529 (2010).

    Article  Google Scholar 

  11. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292, 1897 (2001).

    Article  Google Scholar 

  12. Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater. 13, 9 (2003).

    Article  Google Scholar 

  13. A. M. Morales and C. M. Lieber, Science 279, 208 (1998).

    Article  Google Scholar 

  14. T. Ji, M. Tang, L. Guo, X. Qi, Q. Yang, and H. Xu, Solid Stat. Commun. 133, 765 (2005).

    Article  Google Scholar 

  15. L. Guo, Z. Wu, T. Liu, W. Wang, and H. Zhu, Chem. Phys. Lett. 318, 49 (2000).

    Article  Google Scholar 

  16. A. K. Srivastava and B. C. Yadav, Materials Science-Poland 28, 491 (2010).

    Google Scholar 

  17. H. W. Kim and N. H. Kim, Appl. Phys. A 80, 537 (2005).

    Article  Google Scholar 

  18. H. W. Kim, S. H. Shim, J. W. Lee, J. Y. Park, and S. S. Kim, Chem. Phys. Lett. 456, 193 (2008).

    Article  Google Scholar 

  19. L. Liao, H. B. Lu, J. C. Li, C. Liu, D. J. Fu, and Y. L. Liu, Appl. Phys. Lett. 91, 173110 (2007).

    Article  Google Scholar 

  20. M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee, and S. H. Hong, Appl. Phys. Lett. 93, 263103 (2008).

    Article  Google Scholar 

  21. C. Yan and P. S. Lee, J. Phys. Chem. C 113, 14135 (2009).

    Article  Google Scholar 

  22. K. A. Dick, K. Deppert, L. S. Karlsson, L. R. Wallenberg, L. Samuelson, and W. Seifert, Adv. Funct. Mater. 15, 1603 (2005).

    Article  Google Scholar 

  23. S. J. Whang, S. Lee, D. Z. Chi, W. F. Yang, B. J. Cho, Y. F. Liew, and D. L. Kwong, Nanotechnology 18, 275302 (2007).

    Article  Google Scholar 

  24. Y. Sierra-Sastre, S. A. Dayeh, S. T. Picraux, and C. A. Batt, ACS Nano 4, 1209 (2010).

    Article  Google Scholar 

  25. S. Y. Pung, K. L. Choy, and X. H. Hou, J. Cryst. Growth 312, 2049 (2010).

    Article  Google Scholar 

  26. G. Bandoli, D. Barreca, E. Brescacin, G. A. Rizzi, and E. Tondello, Chemical Vapor Deposition 2, 238 (1996).

    Article  Google Scholar 

  27. S.-W. Choi, J. Zhang, K. Akash, and S. S. Kim, Sens. Actuators B 169, 54 (2012).

    Article  Google Scholar 

  28. M. Takata, D. Tsubone, and H. Yanagida, J. Am. Ceram. Soc. 59, 4 (1975).

    Article  Google Scholar 

  29. G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, and M. Niederberger, Sens. Actuators B 127, 455 (2007).

    Article  Google Scholar 

  30. B. Ruhland, T. Becker, and G. Muller, Sens. Actuators B 50, 85 (1998).

    Article  Google Scholar 

  31. S. Liang, M. Qin, Y. Tang, Q. Zhang, X. Li, X. Tan, and A. Pan, Met. Mater. Int. 20, 983 (2014).

    Article  Google Scholar 

  32. H.-H. Kim, J.-I. Son, H.-S. Yun, and N.-H. Cho, Met. Mater. Int. 20, 1115 (2014).

    Article  Google Scholar 

  33. H. S. Kang, J. M. Doh, J. K. Yoon, and I. J. Shon, Korean J. Met. Mater. 52, 777 (2014).

    Google Scholar 

  34. Y. N. and O. Song, Korean J. Met. Mater. 52, 821 (2014).

    Google Scholar 

  35. S.-Y. Kim, C. J. Raj, and H.-J. Kim, Electron Mater. Lett. 10, 1137 (2014).

    Article  Google Scholar 

  36. J. S. Maeng, D. J. Choi, K.-O. Ahn, and Y.-H. Kim, Electron Mater. Lett. 10, 1019 (2014).

    Article  Google Scholar 

  37. S.-P. Chang, C.-H. Wen, and S.-J. Chang, Electron Mater. Lett. 10, 693 (2014).

    Article  Google Scholar 

  38. H. Okamoto and T. B. Massalski, Bull. Alloy Phase Diagram 5, 166 (1984).

    Article  Google Scholar 

  39. H. Okamoto and T. B. Massalski, Bull. Alloy Phase Diagram 4, 401 (1983).

    Article  Google Scholar 

  40. H. Okamoto, J. Phase Equil. Diffusion 33, 493 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoun Woo Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S.S., Na, H.G., Kwon, Y.J. et al. Synthesis and room-temperature NO2 sensing properties of Sb2O5 nanowires. Met. Mater. Int. 21, 415–421 (2015). https://doi.org/10.1007/s12540-015-4264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4264-6

Keywords

  • nanostructured materials
  • chemical synthesis
  • transmission electron microscopy
  • X-ray diffraction
  • Sb2O5