Skip to main content
Log in

Pulsed current activated synthesis and rapid consolidation of a nanostructured Mg2Al4Si5O18 and its mechanical properties

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Nanocrystalline materials have received much attention as advanced engineering materials, with improved mechanical properties. Attention has been directed to the application of nanomaterials, as they possess excellent mechanical properties (high strength, high hardness, excellent ductility and toughness). A singlestep synthesis and consolidation of nanostructured Mg2Al4Si5O18 was achieved by pulsed current heating, using the stoichiometric mixture of MgO, Al2O3 and SiO2 powders. Before sintering, the powder mixture was high-energy ball milled for 10 h. From the milled powder mixture, a highly dense nanostructured Mg2Al4Si5O18 compound could be obtained within one minute, under the simultaneous application of 80 MPa pressure, and a pulsed current. The advantage of this process is that it allows an instant densification to the near theoretical density, while sustaining the nanosized microstructure of raw powders. The sintering behavior, microstructure and mechanical properties of Mg2Al4Si5O18 were evaluated. The fracture toughness of a nanostructured Mg2Al4Si5O18 compound was higher than that of sub-micron Mg2Al4Si5O18 compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Zhu, H. Zhou, Y. Xie, and M. Liu, J. Mater. Sci.: Matter Electron. 21, 231 (2010).

    Google Scholar 

  2. I. Jankovic-Castvan, S. Lazarevic, B. Jordovic, R. Petrovic, D. Tanaskovic, and D. Janackovic, J. Eur. Ceram. Soc. 27, 3659 (2007).

    Article  Google Scholar 

  3. O. I. Salychits and S. E. Orekihova, Inorg. Mater. 47, 899 (2011).

    Article  Google Scholar 

  4. Y. Hu and H.-T. Tsai, J. Non-Cryst. Solids 286, 51 (2001).

    Article  Google Scholar 

  5. M. K. Naskar and M. Chatterjee, J. Eur. Ceram. Soc 24, 3499 (2004).

    Article  Google Scholar 

  6. K. Singh, N. Gupta, and O. P. Pandey, J. Mater. Sci. 42, 6426 (2007).

    Article  Google Scholar 

  7. H. Ohsato, M. Terada, I. Kagomiya, K. Kawamura, K.-I. Kakimoto, and E.S. Kim, IEEE Trans. Ultrason. Ferr. 55, 1081 (2008).

    Article  Google Scholar 

  8. M. A. Aksan, M. E. Yakinci, and Y. Balci, J. Therm. Anal. Calorim. 81, 417 (2004).

    Article  Google Scholar 

  9. G. Kirat and M. A. Aksan, J. Alloy. Compd. 577, 556 (2013).

    Article  Google Scholar 

  10. M. Sherif El-Eskandarany, J. Alloy. Compd. 305, 225 (2000).

    Article  Google Scholar 

  11. W. Kim, C. Y. Suh, K. M. Roh, S. W. Cho, K. I. Na, and I. J. Shon, J. Alloy. Compd. 568, 73 (2013).

    Article  Google Scholar 

  12. K. Niihara and A. Nikahira A, Advanced Structural Inorganic Composite, p.12, Elsevier Scientific Publishing Co., Trieste, Italy (1990).

    Google Scholar 

  13. S. Berger, R. Porat, and R. Rosen, Nanocrystalline Materials: A Study of WC-based Hard Metals, Progress in Materials 42, 311 (1997).

    Google Scholar 

  14. J. Jung and S. Kang, Scripta Mater. 56, 561 (2007).

    Article  Google Scholar 

  15. I. J. Shon, K.I. Na, J. M. Doh, H. K. Park, J. K. Yoon, Met. Mater. Int. 19, 99 (2013).

    Article  Google Scholar 

  16. G. W. Lee and I. J. Shon, Korean J. Met. Mater. 51, 95 (2013).

    Google Scholar 

  17. S. M. Kwak, H. K. Park, and I. J. Shon, Korean J. Met. Mater. 51, 314 (2013).

    Google Scholar 

  18. I. J. Shon, S. L. Du, J. M. Doh, and J. K. Yoon, Met. Mater. Int. 19, 1041 (2013).

    Article  Google Scholar 

  19. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, p.207, Plenum Press, New York (1998).

    Book  Google Scholar 

  20. M. A. Camerucci, G. Urretavizcaya, and A. L. Cavalieri, Journal of European Ceramic Society, 21, 1195 (2001).

    Article  Google Scholar 

  21. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).

    Article  Google Scholar 

  22. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004).

    Article  Google Scholar 

  23. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004).

    Article  Google Scholar 

  24. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).

    Article  Google Scholar 

  25. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).

    Article  Google Scholar 

  26. S. Takeuchi, Scripta mater. 44, 1483 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jin Shon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shon, IJ., Kang, HS., Doh, JM. et al. Pulsed current activated synthesis and rapid consolidation of a nanostructured Mg2Al4Si5O18 and its mechanical properties. Met. Mater. Int. 21, 345–349 (2015). https://doi.org/10.1007/s12540-015-4051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4051-4

Keywords

Navigation