Skip to main content
Log in

Using a scale-bridging technique to determine the effect of elastic properties on stress distribution around the femoral stem of an artificial hip joint with a simplified geometry

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A scale-bridging technique was used to investigate the effect of the elastic properties of β-Ti alloys on the stress distribution around the femoral stem of an artificial hip joint with a simplified geometry when under an external loading. The anisotropic elastic constants of single-crystalline β-Ti alloys (TN1: Ti-18.75 at% Nb, TN2: Ti-37.5 at% Nb, and TN3: Ti-43.75 at% Nb) were calculated using an ab-initio technique that was based on density functional theory calculation. The single-crystalline elastic constants calculated via the ab-initio technique were used to calculate the elastic constants of polycrystal β-Ti alloys using an elastic selfconsistent scheme. Finite element analysis based on the elastic constants of polycrystalline β-Ti alloys for a femoral stem was conducted to calculate the above-mentioned stress distribution. The model system consisting of a TN1 alloy exhibited a relatively high level of von Mises stress on the surface of cancellous and cortical bones compared to model systems consisting of TN2, TN3 alloys and commercial biomaterials (Ti-6Al-4V alloy and 316STS). The thickness of the cancellous bone between the femoral stem and the cortical bone affected the stress concentration on the surface of the cortical bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Niinomi, Mater. Sci. Eng. A. 243, 231 (1998).

    Article  Google Scholar 

  2. S. Gross and E. W. Abel, J. Biomech. 34, 995 (2001).

    Article  Google Scholar 

  3. J. Park and R. S. Lakes, Biomaterials: An Introduction, 3rd ed., p.392, Springer, New York, London (2007).

    Google Scholar 

  4. S.-H. Park, K.-D. Woo, J.-Y. Kim, and S.-H. Kim, Korean. J. Met. Mater, 50, 469 (2012).

    Google Scholar 

  5. A. M. Omran, K. D. Woo, D. K. Kim, S. W. Kim, M. S. Moon, N. A. Barakat, and D. L. Zhang, Met. Mater. Int. 14, 321 (2008).

    Article  Google Scholar 

  6. M. Popa, E. Vasilescu, P. Drob, D. Raducanu, J. M. C. Moreno, S. Ivanescu, C. Vasilescu, and S. I. Drob, Met. Mater. Int. 18, 639 (2012).

    Article  Google Scholar 

  7. U. Simon, P. Augat, A. Ignatius, and L. Claes, J. Biomech. 36, 1079 (2003).

    Article  Google Scholar 

  8. S. J. Shefelbine, U. Simon, L. Claes, A. Gold, Y. Gabet, I. Bab, R. Müller, and P. Augat, Bone. 36, 480 (2005).

    Article  Google Scholar 

  9. S. Benli, S. Aksoy, H. Havltclolu, and M. Kucuk, J. Biomech. 41, 3229 (2008).

    Article  Google Scholar 

  10. S. H. Pettersen, T. S. Wik, and B. Skallerud, Clin. Biomech. 24, 196 (2009).

    Article  Google Scholar 

  11. D. Ma, M. Friák, J. Neugebauer, D. Raabe, and F. Roters, Phys. Stat. Sol(b). 245, 2642 (2008).

    Article  Google Scholar 

  12. G. Ghosh, S. Delsante, G. Borzone, M. Asta, and R. Ferro, Acta Mater. 54, 4977 (2006).

    Article  Google Scholar 

  13. G. Ghosh, S. Vaynman, M. Asta, and M. E. Fine, Intermetallics. 15, 44 (2007).

    Article  Google Scholar 

  14. B.-Y. Tang, N. Wang, W.-Y. Yu, X.-Q. Zeng, and W.-J. Ding, Acta Mater. 56, 3353 (2008).

    Article  Google Scholar 

  15. M. Friák, T. Hickel, B. Grabowski, L. Lymperakis, A. Udyansky, A. Dick, D. Ma, F. Roters, L.-F. Zhu, A. Schlieter, U. Kühn, Z. Ebrahimi, R. A. Lebensohn, D. Holec, J. Eckert, H. Emmerich, D. Raabe, and J. Neugebauer, Eur. Phys. J. Plus. 126, 101 (2011).

    Article  Google Scholar 

  16. D. Raabe, B. Sander, M. Friák, D. Ma, and J. Neugebauer, Acta Mater. 55, 4475 (2007).

    Article  Google Scholar 

  17. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  18. G. Kresse and J. Furthmuller, Phys. Rev. B. 54, 11169 (1996).

    Article  Google Scholar 

  19. U. F. Kocks, C. N. Tome and H. R. Wenk, Textures and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, New York (1998).

    Google Scholar 

  20. http://cmp.univie.ac.at/research/vasp/(2013).

  21. P. E. Blöchl, Phys. Rev. B. 50, 17953 (1994).

    Article  Google Scholar 

  22. G. Kresse and D. Joubert, Phys. Rev. B. 59, 1758 (1999).

    Article  Google Scholar 

  23. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  24. H. J. Monkhorst and J. D. Pack, Phys. Rev. B. 13, 5188 (1976).

    Article  Google Scholar 

  25. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, New York (1985).

    Google Scholar 

  26. K. B. Panda and K. S. Ravi, Chandran, Acta Mater. 54, 1641 (2006).

    Article  Google Scholar 

  27. W. Voigt, Lehrbuch der Kristallpysik, Leipzig Taubner, Germany (1928).

    Google Scholar 

  28. A. Reuss and Z. Angnew, Math. Mech. 9, 49 (1929).

    Google Scholar 

  29. G. Denoziere and D. N. Ku, J. Biomech. 39, 766 (2006).

    Article  Google Scholar 

  30. D. L. Kopperdahl and T. M. Keaveny, J. Biomech. 31, 601 (1998).

    Article  Google Scholar 

  31. A. Herreraa, E. Ibarzb, J. Cegoñino, A. Lobo-Escolar, S. Puértolas, E. López, J. Mateo and L. Gracia, World. J. Orthop. 3(4), 25 (2012).

    Article  Google Scholar 

  32. Y. Noyama, T. Nakano, T. Ishimoto, T. Sakai, and H. Yoshikawa, Bone. 52, 659 (2013).

    Article  Google Scholar 

  33. C. Zener, Elasticity and an Elasticity of Metals, University of Chicago Press, Chicago (1948).

    Google Scholar 

  34. W. F. Hosford, The Mechanics of Crystals and Textured Polycrytstals, 19, Oxford University Press, New York (1993).

    Google Scholar 

  35. R. Hill, Proc. Phys. Soc. A. 65, 349 (1952).

    Article  Google Scholar 

  36. A. V. Hershey, J. Appl. Mech. 21, 236 (1954).

    Google Scholar 

  37. W. A. Counts, M. Friak, C. C. Battaile, D. Raabe, and J. Neugebauer, Phys. Stat. Sol(b). 245, 2630 (2008).

    Article  Google Scholar 

  38. C.-H. Goh, R. W. Neu, and D. L. McDowell, Int. J. Plasticity. 19, 1627 (2003).

    Article  Google Scholar 

  39. J. Chen and F. Y. Yan, Trans. Nonferr. Met. Soc. China. 22, 1356 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. -C. Lee or S. -H. Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, C.U., Lee, S.C., Rhee, H.N. et al. Using a scale-bridging technique to determine the effect of elastic properties on stress distribution around the femoral stem of an artificial hip joint with a simplified geometry. Met. Mater. Int. 20, 593–600 (2014). https://doi.org/10.1007/s12540-014-4003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-4003-4

Keywords

Navigation