Skip to main content
Log in

Development of thermoelectric module based on dense Ca3Co4O9 and Zn0.98Al0.02O legs

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ca3Co4O9 (p-type) and Zn0.98Al0.02O (n-type) pellets were prepared by conventional sintering (CS) and Spark Plasma sintering (SPS) starting from the oxides. The best p-type sample was SPS Ca3Co4O9 obtained from pre-sintered pellets, with electrical conductivity σ = 144 S/cm and Seebeck coefficient S = 172 μV/K at 800 °C, while thermal conductivity κ = 2.00 W/m×K and figure of merit ZT = 0.23. The best n-type sample was CS Zn0.98Al0.02O showing σ = 83 S/cm and S = −268 μV/K at 800 °C, while = 5.03 W/m×K and ZT = 0.127. The output power of a module based on SPS Ca3Co4O9 and CS Zn0.98Al0.02O legs was 2.26 mW (with T = 500 °C, ΔT = 248 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Arunachalam and E. L. Fleischer, Eds., Harnessing Materials for Energy, pp.250–477, MRS Bulletin 33, (2008).

    Google Scholar 

  2. T. M. Tritt and M. A. Subramanian, Eds., Harvesting Energy through Thermoelectrics: Power Generation and Cooling, pp.188–229, MRS Bulletin 31, (2006).

    Google Scholar 

  3. G. J. Snyder and D. S. Toberer, Nature Materials 7, 105 (2008).

    Article  Google Scholar 

  4. H. Böttner, Mater. Res. Soc. Symp. Proc. 1166, N01–01 (2009).

    Article  Google Scholar 

  5. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  6. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 517 (2001).

    Article  Google Scholar 

  7. S. Katsuyama, H. Okada, and K. Miyajima, Mater. Trans 49, 1731 (2008).

    Article  Google Scholar 

  8. H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka, J. Alloy. Compd. 469, 50 (2009).

    Article  Google Scholar 

  9. K. Suekuni, M. A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa, and T. Takabatake, Phys. Rev. B 77, 235119 (2008).

    Article  Google Scholar 

  10. M. Otake, K. Sato, O. Sugiyama, and S. Kaneko, Solid State Ionics 172, 523 (2004).

    Article  Google Scholar 

  11. B. Poudel Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashayee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  12. M. Kashiwagi, S. Hirata, K. Harada, Y. Zheng, K. Miyazaki, M. Yahiro, and C. Adachi, Appl. Phys. Lett. 98, 023114 (2011).

    Article  Google Scholar 

  13. Y. Gelbstein, Z. Dashevsky, and M. P. Dariel, Physica B 363, 196 (2005).

    Article  Google Scholar 

  14. E. S. Toberer, A. F. May, and G. J. Snyder, Chem. Mater. 22, 624 (2010).

    Article  Google Scholar 

  15. M. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Article  Google Scholar 

  16. N. N. Greenwood and A. Earnshaw Eds, Chemistry of the Elements, p 1496, Pergamon Press Ed., Hong Kong (1989).

    Google Scholar 

  17. D. V. Malakhov, Inorg. Mat. 30, 1 (1994).

    Google Scholar 

  18. K. Koumoto, I. Terasaki, and R. Funahashi, MRS Bull. 31, 206 (2006).

    Article  Google Scholar 

  19. I. Terasaki and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  Google Scholar 

  20. M. Lee, L. Viciu, L. Li, Y. Wang, M. L. Foo, S. Watauchi, R. A. Pascal Jr., R. J. Cava, and N. P. Ong, Nature. Materials 5, 537 (2006).

    Article  Google Scholar 

  21. Y. Fujishiro, M. Miyata, M. Awano, and K. Maeda, J. Am. Ceram. Soc. 87, 1890 (2004).

    Article  Google Scholar 

  22. H. Tsai, T. Norby, T. T. Tan, R. Donelson, Z. D. Chen, and S. Li, Appl. Phys. Lett. 96, 141905 (2010).

    Article  Google Scholar 

  23. N. V. Nong, C.-J. Liu, and M. Ohtaki, J. Alloy. Compd. 491, 53 (2010).

    Article  Google Scholar 

  24. J. G. Noudem, M. Prevel, A. Veres, D. Chateigner, and J. Galy, J. Electroceram. 22, 91 (2009).

    Article  Google Scholar 

  25. W. Shin and N. Murayama, J. Mater. Res., 15, 382 (2000).

    Article  Google Scholar 

  26. M. Shizuya, M. Isobe, Y. Baba, T. Nagai, M. Osada, K. Kosuda, S. Takenouchi, Y. Matsui, and E. Takayama-Muromachi, J. Solid State Chem. 180, 249 (2007).

    Article  Google Scholar 

  27. D. Berardan, E. Guilmeau, A. Maignan, and B. Raveau, Solid State Commun. 146, 97 (2008).

    Article  Google Scholar 

  28. Y. Masuda, M. Ohta, W.-S. Seo, W. Pitsche, and K. Koumoto, J. Sol. State Chem. 150, 221 (2000).

    Article  Google Scholar 

  29. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).

    Article  Google Scholar 

  30. H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloy. Compd. 368, 22 (2004).

    Article  Google Scholar 

  31. H. Ohta, Materials Today 10, 44 (2007).

    Article  Google Scholar 

  32. R. Funahashi, A. Kosuga, N. Miyasou, E. Takeuchi, S. Urata, K. Lee, H. Ohta, and K. Koumoto, Proc. of 2007 International Conf. on Thermoelectrics, pp.124–128.

  33. C.-J, Liu, A. Baskhar, and J. J. Juan, Appl. Phys. Lett. 96, 214101 (2001).

    Google Scholar 

  34. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).

    Article  Google Scholar 

  35. M. Ohtaki, K. Araki, and K. Yamamoto, J. Electr. Mater. 38, 1234 (2009).

    Article  Google Scholar 

  36. N. Ma, J.-F. Li, B. P. Zhang, Y. H. Lin, L. R. Ren, and G. F. Chen, J. Phys. Chem. Solids 71, 1344 (2010).

    Article  Google Scholar 

  37. K. H. Kim, S. H. Shim, K. B. Shim, K. Niihara, and J. Hojo, J. Am. Ceram. Soc. 88, 628 (2005).

    Article  Google Scholar 

  38. J. W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).

    Article  Google Scholar 

  39. M. Ohtaki, J. Ceram. Soc. Japan 119, 770 (2011).

    Article  Google Scholar 

  40. J. He, Y. Liu, and R. Funahashi, J. Mater. Res. 26, 1762 (2011).

    Article  Google Scholar 

  41. Y. Miyazaki, K. Kodo, M. Akoshima, Y. Ono, Y. Koike, and T. Kajiytani, Jpn. J. Appl. Phys. 39, L531 (2000).

    Article  Google Scholar 

  42. A. Satake, H. Tanaka, T. Ohkawa, T. Fujii, and I. Terasaki, J. Appl. Phys. 9, 931 (2004).

    Article  Google Scholar 

  43. A. C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys. Rev. B 62, 166 (2000).

    Article  Google Scholar 

  44. S. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka, and H. Yamada, Chem. Mater. 12, 2424 (2000).

    Article  Google Scholar 

  45. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M.A. Reschikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morko, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  46. J. P. Wi, Y. Kinemuchi, and K. Watari, Mater. Lett. 63, 2470 (2009).

    Article  Google Scholar 

  47. N. Vogel-Schauble, Y. E. Romanyuk, S. Yoon, K. J. Saji, S. Popuolh, S. Pokrant, M. H Aguirre, and A. Wiedenkaff, Thin Solid Films 520, 6869 (2012).

    Article  Google Scholar 

  48. A. I. Abutaha, S. R. Sarath Kumar, H. N. Alshareef, Appl. Phys. Lett. 102, 053507 (2013).

    Article  Google Scholar 

  49. P. Mele, S. Saini, H. Honda, K. Matsumoto, K. Miyazaki, H. Hagino, and A. Ichinose, Appl. Phys. Lett. 102, 253903 (2013).

    Article  Google Scholar 

  50. Z. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  Google Scholar 

  51. P. Mele, K. Matsumoto, T. Azuma, K. Kamesawa, S Tanaka, J. Kurosaki, and K. Miyazaki, MRS Symp. Proc. 1166, N03–23 (2009).

    Article  Google Scholar 

  52. N. Dragoe, D. Berardan, and C. Byl, Phys. Status Solidi A 208, 140 (2011).

    Article  Google Scholar 

  53. Q. M. Lu, J. X. Zhang, Q. Y. Zhang, Y. Q. Liu, and D. M. Liu, Proc. of 2006 International Conf. on Thermoelectrics, pp.66–69.

  54. L. M. Wang, C.-Y. Chang, S.-T. Yeh, S. W. Chen, Z. A. Peng, S. C. Bair, D. S. Lee, F. C. Liao, and Y. K. Kuo, Ceram. Int. 38, 1167 (2012).

    Article  Google Scholar 

  55. D. Ebling, K. Bartholomé, M. Bartel, and M. Jägle, J. Electron. Mater 39, 1376 (2010).

    Article  Google Scholar 

  56. H. Q. Liu, X. B. Zhao, F. Liu, Y. Song, Q. Sun, T. J. Zhu, and F. P. Wang, J. Mater. Sci. 43, 6933 (2008).

    Article  Google Scholar 

  57. F. P. Zhang, Q. M. Lu, and J. X. Zhang, J. Alloys Compd. 84, 550 (2009).

    Article  Google Scholar 

  58. H. Q. Liu, X. B. Zhao, T. J. Zhu, Y. Song, and F. P. Wang, Curr. Appl. Phys. 9, 409 (2009).

    Article  Google Scholar 

  59. Y. H. Lin, C. W. Nan, Y. Liu, J. Li, T. Mizokawa, and Z. Shen, J. Am. Ceram. Soc. 90, 132 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Mele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mele, P., Kamei, H., Yasumune, H. et al. Development of thermoelectric module based on dense Ca3Co4O9 and Zn0.98Al0.02O legs. Met. Mater. Int. 20, 389–397 (2014). https://doi.org/10.1007/s12540-014-2024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-2024-7

Key words

Navigation