Skip to main content
Log in

Nano- and microvoid formation in ultrafine-grained martensitic Fe-Ni-Mn steel after severe cold rolling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Severe cold-rolling was applied on solution annealed Fe-Ni-Mn steel with fully lath martensite structure to obtain ultrafine-grained structure. Field emission scanning electron microscopy and high resolution transmission electron microscopy (HRTEM) were employed to investigate the microstructural evolution after severe cold-rolling. HRTEM images showed the typical deformed structure consisting of lamellar dislocation cell blocks. HRTEM study also revealed strain-induced reverse martensitic transformation (activated during grain refinement). It was assumed that severe plastic deformation route and related deformation mode were responsible for microstructural evolutions. X-ray diffraction (XRD) diagram revealed 7% (volume fraction) reverted austenite after final deformation pass. Moreover, HRTEM images revealed nano-void nucleation at the interface of severely deformed martensite and reverted austenite presumably due to high strain energy of misfit and molar volume difference between the austenite and the martensite. It seems that the coalescence of nano-voids could lead to the formation of microvoids in the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov IV, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  2. N. Tsuji, Y. Saito, S. H. Lee, and Y. Minamino, Adv. Eng. Mater. 5, 338 (2003).

    Article  Google Scholar 

  3. R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci. 51, 881 (2006).

    Article  Google Scholar 

  4. A. P. Zhilyaev, and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008).

    Article  Google Scholar 

  5. D. R. Fang, Y. Z. Tian, Q. Q. Duan, S. D. Wu, F. Zhang, N. Q. Zhao, and J. J. Li, J. Mater. Sci. 46, 5002 (2011).

    Article  Google Scholar 

  6. R. Lapovok, D. Tomus, J. Mang, Y. Estrin, and T.C. Lowe, Acta Mater. 57, 2909 (2009).

    Article  Google Scholar 

  7. S. V. Divinski, K. A. Padmanabhan, and G. Wilde, Phil. Magazine 91–36, 4574 (2011).

    Article  Google Scholar 

  8. S. V. Divinski, J. Ribbe, D. Baither, G. Schmitz, G. Reglitz, H. Rösner, K. Sato, Y. Estrin, and G. Wilde, Acta Mater. 57, 5706 (2009).

    Article  Google Scholar 

  9. B. Oberdorfer, B. Lorenzoni, K. Unger, W. Sprengel, M. Zehetbauer, R. Pippanc, and R. Würschuma, Scripta Mater. 63, 452 (2010).

    Article  Google Scholar 

  10. H. Ghasemi-Nanesa, M. Nili-Ahmadabadi, and H. Shirazi, Journal of Physics: Conference Series. 240, 012117 (2010).

    Google Scholar 

  11. M. Nili-Ahmadabadi, H. Shirazi, H. Ghasemi-Nanesa, S. Hossein Nedjad, B. Poorganji, and T. Furuhara, Mater. Design 32, 3526 (2011).

    Article  Google Scholar 

  12. H. Ghasemi-Nanesa, M. Nili-Ahmadabadi, H. Shirazi, S. Hossein Nedjad, and S. H. Pishbin, Mater. Sci. Eng. A. 527, 7552 (2010).

    Article  Google Scholar 

  13. A. Mirsepasi, M. Nili-Ahmadabadi, M. Habibi-Parsa, H. Ghasemi-Nanesa, and A. F. Dizaji, Mater. Sci. Eng. A. 551, 32 (2012).

    Article  Google Scholar 

  14. A. H. Cottrell, Trans. Metal Soc. AIME. 212, 192 (1958).

    Google Scholar 

  15. K. D. Amar, D. C. Murdock, M. C. Mataya, J. G. Speer, and D. K. Matlock, Scripta Mater. 50, 1445 (2004).

    Article  Google Scholar 

  16. B. D. Cullity, and S. R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, NewJersey (2001).

    Google Scholar 

  17. H. Ghasemi-Nanesa, M. Nili-Ahmadabadi, H. Shirazi, and T. Furuhara, Proc, 4th Int. Conf. on Nanostructures (A. Z. Moshfegh), p.594, Kish Island, Iran (2012).

    Google Scholar 

  18. Y. Ivanisenko, I. MacLaren, X. Sauvage, R. Z. Valiev, and H. J. Fecht, Acta Mater. 54–6, 1659 (2006).

    Article  Google Scholar 

  19. E. V. Kozlov, L. A. Teplyakova, N. A. Popova, Y. F. Ivanov, D. V. Lychagin, L. N. Ignatenko, and N. A. Koneva, Russian Physics Journal. 35–10, 906 (1992).

    Article  Google Scholar 

  20. E. V. Kozlov, N. A. Popova, N. A. Grigor’eva, L. No Ignatenko, T. A. Kovalevskaya, L. A. Teplyakova, and B. D. Chukhin, Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika. 3, 112(1991).

    Google Scholar 

  21. E. V. Kozlov, A. N. Zhdanov, and N. Koneva, Physical Mesomechanics. 11, 42 (2008).

    Article  Google Scholar 

  22. H. Ghasemi-Nanesa, M. Nili-Ahmadabadi, H. R. Koohdar, M. Habibi-Parsa, S. Hossein Nedjad, S. A. Alidokht, and T. G. Langdon, to be published in Phil. Magazine (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Ghasemi-Nanesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemi-Nanesa, H., Nili-Ahmadabadi, M., Mirsepasi, A. et al. Nano- and microvoid formation in ultrafine-grained martensitic Fe-Ni-Mn steel after severe cold rolling. Met. Mater. Int. 20, 201–205 (2014). https://doi.org/10.1007/s12540-014-2002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-2002-0

Key words

Navigation