Skip to main content
Log in

Precipitation behavior in Al-Zn-Mg-Cu alloy after direct quenching

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The precipitation behavior in an Al-6.8Zn-1.9Mg-1.0Cu-0.12Zr alloy after direct quenching from solution heat treatment temperature of 470 °C to 205–355 °C was investigated by means of hardness tests, electrical conductivity tests, and transmission electron microscopy. At temperatures below 265 °C, the hardness increased gradually to a peak value and then decreased rapidly with time. At 265 °C, the hardness was almost unchanged within the initial 2000 s and then decreased gradually. At higher temperatures, the hardness decreased slowly with time. The electrical conductivity started to increase after a certain period of time and then tended to maintain a constant value at all temperatures. Microstructure examination indicated heterogeneous precipitation of the η phase at grain boundaries and inside grains during holding at 205 °C and 325 °C. Based on the electrical conductivity data, the precipitation kinetics could be described quite well by the Johnson-Mehl-Avrami-Komolgorov relationship with a n value varying between 0.78 and 1.33. The activation energy was estimated to be about 44.9 kJ/mol, which is close to that expected for a dislocation diffusion mechanism. Time-temperature-transformation diagrams were constructed and the nose temperature ranged from 295 °C to 325 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Wang, Z. M. Yin, and K. Shen, T. Nonferr. Met. Soc. 17, 548 (2007).

    Article  Google Scholar 

  2. L. K. Berg, J. Gjønnes, and V. Hansen, Acta mater. 49, 3443 (2001).

    Article  Google Scholar 

  3. K. Stiller, P. J. Warren, and V. Hansen, Mater. Sci. Eng. A 270, 55 (1999).

    Article  Google Scholar 

  4. D. Godard, P. Archambault, and E. Aeby-Gautier, Acta Mater. 50, 2319 (2002).

    Article  Google Scholar 

  5. S. D. Liu, Y. Zhang, and W. J. Liu, T. Nonferr. Met. Soc. 20, 1 (2010).

    Article  Google Scholar 

  6. P. Y. Li, B. Q. Xiong, and Y. A. Zhang, The Chinese J. Nonferr. Met. 21, 513 (2011).

    Google Scholar 

  7. S. D. Liu, W. J. Liu, and Y. Zhang, J. Alloy. Compd. 507, 53 (2010).

    Article  Google Scholar 

  8. S. D. Liu, X. M. Zhang, and M. A. Chen, Mater. Charact. 59, 53 (2008).

    Article  Google Scholar 

  9. B. Morere, J. C. Ehrstrom, and P. J. Gregson, Metall. Mater. Trans. A 31, 2503 (2000).

    Article  Google Scholar 

  10. S. D. Liu, X. M. Zhang, Z. B. Huang, and Z. P. Zhou, Mater. Sci. Tech. 12, 650 (2008).

    Google Scholar 

  11. M. Iskandar, D. Reyes, and Y. Gaxiola, Eng. Fail. Anal. 10, 199 (2003).

    Article  Google Scholar 

  12. J. D. Robson, Mater. Sci. Eng. A 382, 112 (2004).

    Article  Google Scholar 

  13. S. D. Liu, Y. B. Yuan, C. B. Li, J. H. You, and X. M. Zhang, Met. Mater. Int. 18, 679 (2012).

    Article  Google Scholar 

  14. J. G. Jung, J. S. Park, and Y. K Lee, Met. Mater. Int. 19, 147 (2013).

    Article  Google Scholar 

  15. B. Raeisinia and W. J. Poole, Mater. Sci. Forum 519–521, 1391 (2006).

    Article  Google Scholar 

  16. R. Ferragut, A. Somoza, and I. Torriani, Mater. Sci. Eng. A 334, 1 (2002).

    Article  Google Scholar 

  17. W. Sha, Mater. Des. 28, 528 (2007).

    Article  Google Scholar 

  18. Y. Aouabdia, A. Boubertakh, and S. Hamamda, Mater. Lett. 64, 353 (2010).

    Article  Google Scholar 

  19. J. Royset and N. Ryum, Mater. Sci. Eng. A 396, 409 (2005).

    Article  Google Scholar 

  20. N. Kamp, A. Sullivan, and R. Tomasi, Acta Mater. 54, 2003 (2006).

    Article  Google Scholar 

  21. Y. Du, Y. A. Chang, and B. Y. Huang, Mater. Sci. Eng. A 363, 140 (2003).

    Article  Google Scholar 

  22. F. Takashi, H. Zenji, and G. L. Terence, Mater. Sci. Eng. A 371, 241 (2004).

    Article  Google Scholar 

  23. R. W. Balluffi, Phy.s Status. Solidi. 42, 11 (1970).

    Article  Google Scholar 

  24. C. B. Li, S. D. Liu, Y. L. Deng, and X. M. Zhang, Mater. Sci. Technol. 20, 49 (2012). (in Chinese)

    Google Scholar 

  25. J. Lendvai, Cryst. Res. Technol. 19, 1341 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengdan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Li, C., Deng, Y. et al. Precipitation behavior in Al-Zn-Mg-Cu alloy after direct quenching. Met. Mater. Int. 20, 195–200 (2014). https://doi.org/10.1007/s12540-014-2001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-2001-1

Key words

Navigation