Metals and Materials International

, Volume 20, Issue 1, pp 163–167 | Cite as

Grain size dependent bandgap shift of SnO2 nanofibers

  • Roman Viter
  • Akash Katoch
  • Sang Sub KimEmail author


SnO2 nanofibers with various grain sizes ranging from 18.5 to 31.6 nm in diameter were fabricated by electrospinning a polymeric solution and subsequent controlled calcination of the as-spun fibers. The calcined fibers were polycrystalline and composed of densely packed nano-sized SnO2 grains. The effect of the nanograin size on the optical bandgap of SnO2 nanofibers was examined by ultraviolet-visible spectroscopy. The bandgap showed a strong dependence on the nanograin size. The bandgap decreased with increasing nanograin size. Some calculations were performed to understand the relationship between the experimentally obtained bandgaps of the SnO2 nanofibers and the theoretical ones. Quantum confinement and lattice strain of the SnO2 nanofibers are likely responsible for the bandgap shift. This suggests that optimization of the nanograin size is essential not only for achieving the required optical properties of oxide nanofibers, but also to secure superior working properties of electronic devices that are fabricated with electrospinning-synthesized oxide nanofibers.

Key words

fibers sol-gel grain growth scanning electron microscopy (SEM) bandgap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. E. Williams, Sens. Actuators B: Chem. 57, 1 (1999).CrossRefGoogle Scholar
  2. 2.
    H. Cachet, J. Bruneaux, G. Folcher, C. Levy-Clément, C. Vard, and M. Neumann-Spallart, Sol. Energy Mater. Sol. Cells 46, 101 (1997).CrossRefGoogle Scholar
  3. 3.
    Y. Wang, X. Jiang, and Y. Xia, J. Am. Chem. Soc. 125, 16176 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Y. Park, C. J. Lee, Y. S. Yun, J. H. Moon, B.-T. Lee, and S. S. Kim, J. Cryst. Growth 276, 158 (2005).CrossRefGoogle Scholar
  5. 5.
    J. Y. Park, H. Oh, J.-S. Kim, and S. S. Kim, J. Cryst. Growth 287, 158 (2005).CrossRefGoogle Scholar
  6. 6.
    J. Y. Park and S. S. Kim, Nanoscale Res. Lett. 5, 353 (2005).CrossRefGoogle Scholar
  7. 7.
    S. S. Kim, J. Y. Park, S.-W. Choi, H. S. Kim, H. G. Na, J. C. Yang, and H. W. Kim, Nanotechnology 21, 415502 (2010).CrossRefGoogle Scholar
  8. 8.
    J. Y. Park, S.-W. Choi, and S. S. Kim, Nanotechnology 21, 475601 (2010).CrossRefGoogle Scholar
  9. 9.
    J. Y. Park, S.-W. Choi, and S. S. Kim, J. Phy. Chem. C 115, 12774 (2011).CrossRefGoogle Scholar
  10. 10.
    Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, and C. Zhou, Adv. Mater. 15, 1754 (2003).CrossRefGoogle Scholar
  11. 11.
    S. Das, S. Kar, and S. Chaudhuri, J. Appl. Phys. 99, 114303 (2006).CrossRefGoogle Scholar
  12. 12.
    Y. Wang, I. Ramos, and J. J. S. Avilés, J. App. Phys. 102, 093517 (2007).CrossRefGoogle Scholar
  13. 13.
    W.-S. Kim, B.-S. Lee, D.-H. Kim, H.-C. Kim, W.-R. Yu, and S.-H. Hong, Nanotechnology 21, 245605 (2010).CrossRefGoogle Scholar
  14. 14.
    J. M. Choi, H. C. Hang, J. Y. Hyeon, and J. H. Sok, Korean J. Met. Mater. 50, 763 (2012).Google Scholar
  15. 15.
    S.-W. Choi, J. Y. Park, and S. S. Kim, J. Mater. Res. 26, 1662 (2011).CrossRefGoogle Scholar
  16. 16.
    J. Y. Park and S. S. Kim, J. Am. Ceram. Soc. 92, 1691 (2009).CrossRefGoogle Scholar
  17. 17.
    S.-W. Choi, J. Y. Park, and S. S. Kim, Mater. Chem. Phys. 127, 16 (2011).CrossRefGoogle Scholar
  18. 18.
    S.-W. Choi, J. Y. Park, and S. S. Kim, Chem. Eng. J. 172, 550 (2011).CrossRefGoogle Scholar
  19. 19.
    J. Y. Park, K. Asokan, S.-W. Choi, and S. S. Kim, Sens. Actuators B: Chem. 152, 254 (2011).CrossRefGoogle Scholar
  20. 20.
    J.-S. Lee, S.-K. Sim, B. Min, K. Cho, S. W. Kim, and S. Kim, J. Cryst. Growth 267, 145 (2004).CrossRefGoogle Scholar
  21. 21.
    M. N. Rahaman, Ceramic Processing Sintering, Marcel Dekkar Inc., New York (1995).Google Scholar
  22. 22.
    J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).CrossRefGoogle Scholar
  23. 23.
    A. F. Khan, M. Mehmood, A. M. Rana, M. T. Bhatti, and A. Mahmood, Chin. Phys. Lett. 26, 077803 (2009).CrossRefGoogle Scholar
  24. 24.
    A. S. Ahmed, A. Azam, M. M. Shafeeq, M. Chaman, and S. Tabassum, J. Phys. Chem. Solids 73, 943 (2012).CrossRefGoogle Scholar
  25. 25.
    P. S. Patil, R. K. Kawar, S. B. Sadale, and P. S. Chigare, Thin Solid Film 437, 34 (2003).CrossRefGoogle Scholar
  26. 26.
    W. Wu, S. Zhang, J. Zhou, Xiangheng Xiao, F. Ren, and C. Jiang, Chem. Eur. J. 17, 9708 (2011).CrossRefGoogle Scholar
  27. 27.
    E. J. H. Lee, C. Ribeiro, T. R. Giraldi, E. Longo, E. R. Leite, and J. A. Varela, Appl. Phys. Lett. 84, 1745 (2004).CrossRefGoogle Scholar
  28. 28.
    C. Q. Sun, Solid State Chem. 35, 1 (2007).Google Scholar
  29. 29.
    C. Ribeiro, E. J. H. Lee, T. R. Giraldi, E. Longo, J. A. Varela, and E. R. Leite, J. Phys. Chem. B 108, 15612 (2004).CrossRefGoogle Scholar
  30. 30.
    S. S. Nair, M. Mathews, and M. R. Anantharaman, Chem. Phys. Lett. 406, 398 (2005).CrossRefGoogle Scholar
  31. 31.
    Z. Zhu, G. Ouyang, and G. Yang, J. Appl. Phys. 108, 083511 (2010).CrossRefGoogle Scholar
  32. 32.
    J. Camassel, J. Pascual, and H. Mathieu, Phys. Rev. B 20, 5292 (1979).CrossRefGoogle Scholar
  33. 33.
    D. L. Smith and C. Mailhiot, Rev. Mod. Phys. 62, 173 (1990).CrossRefGoogle Scholar
  34. 34.
    S. Yang, D. Prendergast, and J. B. Neaton, Appl. Phys. Lett. 98, 152108 (2011).CrossRefGoogle Scholar
  35. 35.
    A. Kumar, R. Jose, K. Fujihara, J. Wang, and S. Ramakrishna, Chem. Mater. 19, 6536 (2007).CrossRefGoogle Scholar
  36. 36.
    U. Pietsch, N. Darowski, A. Ulyanenkov, J. Grenzer, K. H. Wang, and A. Forchel, Physica B 283, 92 (2000).CrossRefGoogle Scholar
  37. 37.
    C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989).CrossRefGoogle Scholar
  38. 38.
    A. M. Smith, A. M. Mohs, and S. Nie, Nat. Nanotechnol. 4, 56 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Experimental Physics DepartmentOdessa National I.I. Mechnikov UniversityOdessaUkraine
  2. 2.School of Materials Science and EngineeringInha UniversityIncheonKorea
  3. 3.Institute of Atomic Physics and SpectroscopyUniversity of LatviaRigaLatvia

Personalised recommendations