Skip to main content
Log in

Effects of atomic size difference and heat of mixing parameters on the local structure of a model metallic glass system

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Atomic size differences between constituting elements and the heat of mixing are key factors in designing a metallic glass system. In this study, the effects of atomic size differences and the heat of mixing on the glass-forming ability and the local structure of metallic glasses were studied via molecular dynamic simulations of an ideal system known as the Lennard-Jones embedded-atom method model. The atomic size difference and the heat of mixing of the system were varied by means of the Lennard-Jones parameters. The glass transition behavior was characterized based on the chemical short-range order and by a Voronoi analysis. Our simulations lead to optimized windows of atomic size differences and heat of mixing parameters for metallic glass-forming of the model system. Both a greater negative heat of mixing and a larger atomic size difference are necessary for the enhancement of the glass-forming ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Inoue, Mater. Trans. JIM. 36, 866 (1995).

    Google Scholar 

  2. J. H. Li, Y. Dai, Y. Y. Cui, and B. X. Liu, Mater. Sci. Eng. R: Rep. 72, 1 (2011).

    Article  Google Scholar 

  3. O. N. Senkov and D. B. Miracle, Mater. Res. Bull. 36, 2183 (2001).

    Article  Google Scholar 

  4. Z. P. Lu, C. T. Liu, and Y. D. Dong, J. Non-Cryst. Solids. 341, 93 (2004).

    Article  Google Scholar 

  5. J. Saida, M. Matsushita, and A. Inoue, Mater. Trans. 43, 1937 (2002).

    Article  Google Scholar 

  6. M. Shimono and H. Onodera, Mater. Trans. 46, 2830 (2005).

    Article  Google Scholar 

  7. J. J. Lee, K. W. Park, D. H. Kim, and E. Fleury, Korean J. Met. Mater. 49, 930 (2011).

    Google Scholar 

  8. H.-S. Kim, K.-S. Yoon, and J.-C. Lee, Korean J. Met. Mater. 49, 823 (2011).

    Google Scholar 

  9. V. V. Hoang, Physica B: Condensed Matter 406, 3653 (2011).

    Article  Google Scholar 

  10. M. Shimono and H. Onodera, Mater. Trans. 45, 1163 (2004).

    Article  Google Scholar 

  11. M. Shimono and H. Onodera, Scripta Mater. 44, 1595 (2001).

    Article  Google Scholar 

  12. J. M. Delaye and Y. Limoge, J. Non-Cryst. Solids 156–158, 982 (1993).

    Article  Google Scholar 

  13. P. M. Derlet, R. Maaß, and J. F. Löffler, Eur. Phys. J. B 85, 148 (2012).

    Article  Google Scholar 

  14. D. Wang, Y. Li, B. B. Sun, M. L. Sui, K. Lu, and E. Ma, Appl. Phys. Lett. 84, 4029 (2004).

    Article  Google Scholar 

  15. D. Xu, B. Lohwongwatana, G. Duan, W. L. Johnson, and C. Garland, Acta Mater. 52, 2621 (2004).

    Article  Google Scholar 

  16. M. B. Tang, D.-Q. Zhao, M.-X. Pan, and W.-H. Wang, Chinese Phys. Lett. 21, 901 (2004).

    Article  Google Scholar 

  17. N. Mattern, P. Jóvári, I. Kaban, S. Gruner, A. Elsner, V. Kokotin, H. Franz, B. Beuneu, and J. Eckert, J. Alloys Comp. 485, 163 (2009).

    Article  Google Scholar 

  18. A. E. Lagogianni, G. Almyras, Ch. E. Lekka, D. G. Papageorgiou, and G. A. Evangelakis, J. Alloys Comp. 483, 658 (2009).

    Article  Google Scholar 

  19. G. A. Almyras, Ch. E. Lekka, N. Mattern, and G. A. Evangelakis, Scripta Mater. 62, 33 (2010).

    Article  Google Scholar 

  20. L. Yang, S. Yin, X. D. Wang, Q. P. Cao, J. Z. Jiang, K. Saksl, and H. Franz, J. Appl. Phys. 102, 083512 (2007).

    Article  Google Scholar 

  21. D. Holland-Moritz, S. Stüber, H. Hartmann, T. Unruh, T. Hansen, and A. Meyer, Phys. Rev. B 79, 064204 (2009).

    Article  Google Scholar 

  22. E. W. Iparraguirre, J. Sietsma, and B. J. Thijsse, J. Non-Cryst. Solids 156, 969 (1993).

    Article  Google Scholar 

  23. H. Ruppersberg, D. Lee, and C. N. J. Wagner, J. Phys. F-Met. Phys. 10, 1645 (1980).

    Article  Google Scholar 

  24. L. Pusztai and E. Svab, J. Non-Cryst. Solids 156, 973 (1993).

    Article  Google Scholar 

  25. E. Svab, F. Forgács, F. Hajdu, N. Kroó, and J. Takács, J. Non-Cryst. Solids 46, 125 (1981).

    Article  Google Scholar 

  26. M. Sakata, N. Cowlam, and H. A. Davies, J. Phys. F-Met. Phys. 11, L157 (1981).

    Article  Google Scholar 

  27. L. Zhang, Y.-Q. Cheng, A.-J. Cao, J. Xu, and E. Ma, Acta Mater. 57, 1154 (2009).

    Article  Google Scholar 

  28. T. Takagi, T. Ohkubo, Y. Hirotsu, B. S. Murty, K. Hono, and D. Shindo, Appl. Phys. Lett. 79, 485 (2001).

    Article  Google Scholar 

  29. D. J. Sordelet, R. T. Ott, M. Z. Li, S. Y. Wang, C. Z. Wang, M. F. Besser, A. C. Y. Liu, and M. J. Kramer, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 39A, 1908 (2008).

    Article  Google Scholar 

  30. Y. Q. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).

    Article  Google Scholar 

  31. Y. Q. Cheng, E. Ma, and H. W. Sheng, PRL 102, 245501 (2009).

    Article  Google Scholar 

  32. Y. Q. Cheng, E. Ma, and H. W. Sheng, Appl. Phys. Lett. 93, 111913 (2008).

    Article  Google Scholar 

  33. S. G. Srinivasan and M. I. Baskes, Proc. R. Soc., Lond., Ser. A 460, 1649 (2004).

    Article  Google Scholar 

  34. A. Oluwajobi and X. Chen, Key Eng. Mater. 535–536, 330 (2013).

    Article  Google Scholar 

  35. R. K. Rajgarhia, D. E. Spearot, and A. Saxena, Comp. Mater. Sci. 44, 1258 (2009).

    Article  Google Scholar 

  36. R. B. Godiksen, Z. T. Traut, M. Upmanyu, S. Schmidt, and D. J. Jensen, Mater. Sci. Forum 558–559, 1081 (2007).

    Article  Google Scholar 

  37. X.-L. Ma and W. Yang, Nanotechnology 15, 449 (2004).

    Article  Google Scholar 

  38. Z. Guo and W. Yang, Int. J. Mech. Sci. 48, 145 (2006).

    Article  Google Scholar 

  39. B. Ao, X. Wang, W. Hu, and J. Yang, Phys. Status Solidi B 245, 1493 (2008).

    Article  Google Scholar 

  40. B. Ao, X. Wang, W. Hu, and J. Yang, J. Nucl. Mater. 385, 75 (2009).

    Article  Google Scholar 

  41. Y. Yonekawa and K.-I. Saitoh, Zairyo/Journal of the Society of Materials Science, 59, 624 (2010).

    Article  Google Scholar 

  42. S. Davis, C. Loyola, F. González, and J. Peralta, Comput. Phys. Commun. 181, 2126 (2010).

    Article  Google Scholar 

  43. H. Kang Y. Zhang, and M. Yang, Appl. Phys. A 103, 1001 (2011).

    Article  Google Scholar 

  44. H. Tsuzuki, P. S. Branicio, and J. P. Rino, Comput. Phys. Commun. 177, 518 (2007).

    Article  Google Scholar 

  45. A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, Y.S., Nam, H.S., Cha, P.R. et al. Effects of atomic size difference and heat of mixing parameters on the local structure of a model metallic glass system. Met. Mater. Int. 20, 105–111 (2014). https://doi.org/10.1007/s12540-013-6013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-6013-z

Key words

Navigation