Skip to main content
Log in

Atomistic simulation of hydrogen diffusion at tilt grain boundaries in vanadium

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations of hydrogen diffusion at Σ3 and Σ5 tilt grain boundaries in bcc vanadium (V) have been performed based on modified embedded-atom method interatomic potentials. The calculated diffusivity at the grain boundaries is lower than the calculated bulk diffusivity in a temperature range between 473 and 1473 K, although the difference between the grain boundary and bulk diffusivities decreases with increasing temperature. Compared with that of the other directions, the mean square displacement of an interstitial hydrogen atom at the Σ3 boundary is relatively small in the direction normal to the boundary, leading to two dimensional motion. Molecular statics simulations show that there is strong attraction between the hydrogen atom and these grain boundaries in V, which implies that the role of grain boundaries is to act as trap sites rather than to provide fast diffusion paths of hydrogen atoms in V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Nishimura, M. Komaki, and M. Amano, Mater. Trans. JIM 32, 501 (1991).

    CAS  Google Scholar 

  2. C. Nishimura, T. Ozaki, M. Komaki, and Y. Zhang, J. Alloys. Compd. 356–357, 295 (2003).

    Article  Google Scholar 

  3. M. D. Dolan, G. Song, D. Liang, M. E. Kellam, D. Chandra, and J. H. Lamb, J. Membr. Sci. 373, 14 (2011).

    Article  CAS  Google Scholar 

  4. M. D. Dolan, J. Membr. Sci. 362, 12 (2010).

    Article  CAS  Google Scholar 

  5. M. Tsukahara, Mater. Trans. 52, 68 (2011).

    Article  CAS  Google Scholar 

  6. P. Zhang, J. Zhao, Y. Qin, and B. Wen, Nucl. Instrum. Meth. B 269, 1735 (2011).

    Article  CAS  Google Scholar 

  7. G. Schaumann, J. Völkl, and G. Alefeld, Phys. Stat. Sol. 42, 401 (1970).

    Article  CAS  Google Scholar 

  8. R. Cantelli, F.M. Mazzolai, and M. Nuovo, J. Phys. Chem. Solids 31, 1811 (1970).

    Article  CAS  Google Scholar 

  9. J. M. Rowe, K. Sköld, H. E. Flotow, and J. J. Rush, J. Phys. Chem. Solids 32, 41 (1971).

    Article  CAS  Google Scholar 

  10. R. Heller and H. Wipf, Phys. Stat. Sol. (a) 33, 525 (1976).

    Article  CAS  Google Scholar 

  11. N. Boes and H. Züchner, Z. Naturforsch. A 31, 760 (1976).

    Google Scholar 

  12. T. M. Harris and R. M. Latanision, Metall. Trans. A 22, 351 (1991).

    Article  Google Scholar 

  13. U. Stuhr, T. Striffler, H. Wipf, H. Natter, B. Wettmann, S. Janssen, R. Hempelmann, and H. Hahn, J. Alloys Compd. 253–254, 393 (1997).

    Article  Google Scholar 

  14. B. Szpunar, L. J. Lewis, I. Swainson, and U. Erb, Phys. Rev. B 60, 10107 (1999).

    Article  CAS  Google Scholar 

  15. A. Oudriss, J. Creus, J. Bouhattate, C. Savall, B. Peraudeau, and X. Feaugas, Scr. Mater. 66, 37 (2012).

    Article  CAS  Google Scholar 

  16. J. Yao and J. R. Cahoon, Acta Metall. Mater. 39, 119 (1991).

    Article  CAS  Google Scholar 

  17. A. Pedersen and H. Jónsson, Acta Mater. 57, 4036 (2009).

    Article  CAS  Google Scholar 

  18. Y. Mine, Z. Horita, and Y. Murakami, Acta Mater. 58, 649 (2010).

    Article  CAS  Google Scholar 

  19. B. Roux, H. Jaffrezic, A. Chevarier, N. Chevarier, and M. T. Magda, Phys. Rev. B 52, 4162 (1995).

    Article  CAS  Google Scholar 

  20. X. Liu, W. Xie, W. Chen, and H. Zhang, J. Mater. Res. 26, 2735 (2011).

    Article  CAS  Google Scholar 

  21. H.-B. Zhou, Y.-L. Liu, S. Jin, Y. Zhang, G.-N. Luo, and G.-H. Lu, Nucl. Fusion 50, 025016 (2010).

    Article  Google Scholar 

  22. Y. A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, and R. Drautz, Phys. Rev. B 84, 144121 (2011).

    Article  Google Scholar 

  23. B.-J. Lee and M. I. Baskes, Phys. Rev. B 62, 8564 (2000).

    Article  CAS  Google Scholar 

  24. B.-J. Lee, W.-S. Ko, H.-K. Kim, and E.-H. Kim, CALPHAD 34, 510 (2010).

    Article  CAS  Google Scholar 

  25. B.-J. Lee and K.-R. Lee, Korean J. Met. Mater. 49, 425 (2011).

    CAS  Google Scholar 

  26. B.-J. Lee, M. I. Baskes, H. Kim, and Y. K. Cho, Phys. Rev. B 64, 184102 (2001).

    Article  Google Scholar 

  27. M. I. Baskes, Phys. Rev. B 46, 2727 (1992).

    Article  CAS  Google Scholar 

  28. B.-J. Lee and J.-W. Jang, Acta Mater. 55, 6779 (2007).

    Article  CAS  Google Scholar 

  29. J.-H. Shim, Y.-S. Lee, E. Fleury, Y. W. Cho, W.-S. Ko, and B.-J. Lee, CALPHAD 35, 302 (2011).

    Article  CAS  Google Scholar 

  30. G. H. Campbell, J. Belack, and J. A. Moriarty, Acta Mater. 47, 3977 (1999).

    Article  CAS  Google Scholar 

  31. G. H. Campbell, J. Belack, and J. A. Moriarty, Scr. Mater. 43, 659 (2000).

    Article  CAS  Google Scholar 

  32. A. Einstein, Ann. Phys. 17, 549 (1905).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hyeok Shim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, JH., Ko, WS., Suh, JY. et al. Atomistic simulation of hydrogen diffusion at tilt grain boundaries in vanadium. Met. Mater. Int. 19, 1221–1225 (2013). https://doi.org/10.1007/s12540-013-6012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-6012-0

Key words

Navigation