Skip to main content
Log in

Influence of punch geometries on the divided material flow in a double cup extrusion process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper provides an analysis of the deformation patterns in a backward can extrusion combined simultaneously with a forward can extrusion process, which is known as a double cup extrusion process. The main objective of this study is to examine the divided material flow characteristics in DCEP. Analyses were conducted in a numerical manner by employing a rigid-plastic finite element method. Among many process parameters, the major design factors chosen for analysis include the reduction in area (RAB), the wall thickness ratio (TR), the punch nose radius (R), and the friction condition. The simulation results were summarized in terms of relationships between the process parameters and the ratios of extruded length and volume, and between the process parameters and force requirements, respectively. Comparisons between a multi-stage forming process in sequential operations and one-stage combined operation were also made in terms of the forming load and pressure exerted on the tool. The force requirement and self-regulating characteristics were more greatly influenced by the wall thickness ratio among the selected major design factors. And more severe load to form the same shape is expected in sequential operations than in a combined extrusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Osen, Adv. Technol. Plast. 1, 575 (1986).

    Google Scholar 

  2. J. A. Pale, R. Shivpuri and T. Altan, Development of Equipment and Capabilities for Investigations of Multi-Action Forming of Complex Parts (ERC/NSM Report, No. B-89-28), p.11, ERC/NSM, Ohio, U.S.A. (1989).

    Google Scholar 

  3. H. H. Lin, K. Kawakami, and H. Kudo, Ann. CIRP 37, 231 (1988).

    Article  Google Scholar 

  4. H. J. Choi, J. H. Choi, and B. B. Hwang, J. Mater. Process. Technol. 113, 141 (2001).

    Article  Google Scholar 

  5. D. H. Jang, J. H. Ok, G. M. Lee, and B. B. Hwang, Mater. Sci. Forum 519–521, 955 (2006).

    Article  Google Scholar 

  6. B. D. Ko, D. H. Jang, H. J. Choi, and B. B. Hwang, Int. J. Precis. Eng. Manuf. 6, 26 (2005).

    Google Scholar 

  7. G. M. Lee, H. S. Koo, H. J. Choi, and B. B. Hwang, Mater. Sci. Forum 519–521, 925 (2006).

    Article  Google Scholar 

  8. B. S. Ham, J. H. Ok, J. M. Seo, B. B. Hwang, K. H. Min, and H. S. Koo, Mater. Sci. Forum 519–521, 919 (2006).

    Article  Google Scholar 

  9. S. H. Kim, T. K. Ryu, H. J. Choi, H. S. Koo, and B. B. Hwang, Mater. Sci. Forum 475-479, 3071 (2005).

    Article  CAS  Google Scholar 

  10. J. M. Seo, D. H. Jang, K. H. Min, H. S. Koo, S. H. Kim, and B. B. Hwang, Key Eng. Mater. 340–341, 649 (2007).

    Article  Google Scholar 

  11. V. R. Jayasekara, J. H. Noh, and B. B. Hwang, Steel Res. Int. 81, 398 (2010).

    Article  Google Scholar 

  12. T. Schrader, M. Shirgaoar, and T. Altan, J. Mater. Process. Technol. 189, 36 (2007).

    Article  CAS  Google Scholar 

  13. M. Arentoft, C. Vigso, M. Lindegren, and N. Bay, Proc. of the 5th Int. Conf. on Technol. of Plasticity (eds. T. Altan), p. 243, Columbus, Ohio, USA (1996).

  14. H. J. Choi, B. B. Hwang, B. D. Ko, D. H. Jang, and J. Y. Lim, Mater. Sci. Forum. 449–452, 105 (2004).

    Article  Google Scholar 

  15. D. J. Lee, D. J. Kim, and B. M. Kim, J. Mater. Process. Technol. 139, 422 (2003).

    Article  Google Scholar 

  16. H. Y. Cho, G. S. Min, C. Y. Jo, and M. H. Kim, J. Mater. Process. Technol. 135, 375 (2003).

    Article  Google Scholar 

  17. SFTC, DEFROM-2D Ver. 8.0 Users Manual, Scientific Forming Technologies Corporation Inc., Columbus, USA (2004).

    Google Scholar 

  18. S. J. Yoo and W. J. Kim, Korean J. Met. Mater. 49, 104 (2011).

    CAS  Google Scholar 

  19. C. H. Lee and S. Kobayashi, Trans. ASME, J. Eng. Ind. 865 (1973).

  20. J. H. Noh, K. H. Min, and B. B. Hwang, Tribol. Int. 44, 947 (2011).

    Article  Google Scholar 

  21. ICFG, General Recommendations for Design, Manufacture and Operational Aspects of Cold Extrusion Tools for Steel Components, ICFG, Doc. No. 6/82, Portcullis press. U.S.A. (1983).

    Google Scholar 

  22. J. A. Schey, Metal Deformation Processes Friction and Lubrication, Marcel Dekker, New York, USA (1970).

    Google Scholar 

  23. G. Ngaile, H. Saiki, L. Ruan, and Y. Marumo, Wear 262, 684 (2007).

    Article  CAS  Google Scholar 

  24. Air Force Material Laboratory, Forming Equipment, Materials, and Practices, p. 164, Metal and Ceramics Information center, Columbus, Ohio, USA (1973).

    Google Scholar 

  25. B. B. Hwang, J. H. Shim, J. M. Seo, H. S. Koo, J. H. Ok, Y. H. Lee, G. M. Lee, K. H. Min, and H. J. Choi, Mater. Sci. Forum 519–521, 949 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beong Bok Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noh, J.H., Hwang, B.B. Influence of punch geometries on the divided material flow in a double cup extrusion process. Met. Mater. Int. 19, 1193–1202 (2013). https://doi.org/10.1007/s12540-013-6005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-6005-z

Key words

Navigation