Skip to main content
Log in

Reverse transformation from α′ to γ in lightly and heavily cold-drawn austenitic stainless steel fibers

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The reverse transformation of the strain-induced martensite phase (α′) to the austenite phase (γ) is studied in lightly and heavily cold-drawn 316 L stainless steel fibers using thermomagnetic analysis. The transformation mechanisms of the two types of fiber are different. A three-region reverse transformation process for α′ to γ during the heating process in the two types of fiber is established. Throughout the reverse process, the transformation is dominated by a diffusion-controlled mechanism for the two types of fiber. Shear reversion occurs for the lightly cold-drawn 316 L fiber in region II. A shoulder appears in the TMA curve at around 625 °C for the heavily colddrawn 316 L fiber Transformations of existing α′ and reformed α′ via the diffusion-controlled and shear mechanisms occur in the temperature range of 625–640°C for the heavily cold-drawn 316L fiber. The transformation is attributed to the reformed α′ containing low Nieq content, which retards the reverse transformation of the phase via shear mechanisms until around 625°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tomimura, S. Takaki, S. Tanimoto, and Y. Tokunaga, ISIJ Int. 31, 721 (1991).

    Article  CAS  Google Scholar 

  2. D. L. Johannsen, A. Kyrolainen, and P. J. Ferreira, Metall. Mater. Trans. A 37, 2325 (2006).

    Article  Google Scholar 

  3. A. Di Schino, I. Salvatori, and J. M. Kenny, J. Mater. Sci. 37, 4561 (2002).

    Article  Google Scholar 

  4. M. C. Somani, P. Juntunen, L. P. Karjalainen, R. D. K. Misra, and A. Kyröläinen, Metall. Mater. Trans. A 40, 729 (2009).

    Article  Google Scholar 

  5. R. D. K. Misra, B. R. Kumar, M. Somani, and L. P. Karjalainen, Scr. Mater. 59, 79 (2008).

    Article  CAS  Google Scholar 

  6. S. Rajasekhara, L. P. Karjalainen, A. Kyröläinen, and P. J. Ferreira, Mater. Sci. Eng. A 527, 1986 (2010).

    Article  Google Scholar 

  7. K. Tomimura, S. Takaki, and Y. Tokunaga, ISIJ Int. 31, 1431 (1991).

    Article  CAS  Google Scholar 

  8. S. Takaki, K. Tomimura, and S. Ueda, ISIJ Int. 34, 522 (1994).

    Article  CAS  Google Scholar 

  9. K. Mumtaz, S. Takahashi, J. Echigoya, Y. Kamada, L.F. Zhang, H. Kikuchi, K. Ara, and M. Sato, J. Mater. Sci. 39, 1997 (2004).

    Article  CAS  Google Scholar 

  10. P. L. Mangonon and G. Thomas, Metall. Trans. 1, 1587 (1970).

    Article  CAS  Google Scholar 

  11. K. B. Guy, E. P. Bulter, and D. R. F. West, Met. Sci. 17, 167 (1983).

    Article  CAS  Google Scholar 

  12. T. H. Coleman and D. R. F. West, Met. Sci. 9, 342 (1975).

    Article  CAS  Google Scholar 

  13. A. N. Chukhleb and V. P. Martynov, Phys. Met. Metall. 10, 80 (1960).

    Google Scholar 

  14. S. J. Lee, Y. M. Park, and Y. K. Lee, Mater. Sci. Eng. A 515, 32 (2009).

    Article  Google Scholar 

  15. S. Rajasekhara and P. J. Ferreira, Acta Mater. 59, 738 (2011).

    Article  CAS  Google Scholar 

  16. S. S. M. Tavares, D. Fruchart, and S. Miraglia, J. Alloy. Compd. 307, 311 (2000).

    Article  CAS  Google Scholar 

  17. S. S. M. Tavaresa, M. R. da Silva, J. M. Netod, S. Miraglia, and D. Fruchart, J. Magn. Magn. Mater. 242-245, 1391 (2002).

    Article  Google Scholar 

  18. S. T. Yang, T. W. Shyr, W. S. Hwang, and C. N. Ko, J. Magn. Magn. Mater. 330, 147 (2013).

    Article  CAS  Google Scholar 

  19. R. D. Bruyne, Adv. Mater. Process 147, 33 (1995).

    CAS  Google Scholar 

  20. N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama, and S. Takaki, Acta Mater. 58, 895 (2010).

    Article  CAS  Google Scholar 

  21. J. Talonen, Ph. D. Thesis, pp. 86–91, Department of Mechanical Engineering, Helsinki University of Technology, Finland (2007).

  22. F. Gauzzi, R. Montanari, G. Principi, and M. E. Tata, Mater. Sci. Eng. A 438–440, 202 (2006).

    Article  Google Scholar 

  23. S. T. Yang, W. S. Hwang, T. W. Shyr, and I. L. Cheng, J. Magn. Magn. Mater. 324, 2388 (2012).

    Article  CAS  Google Scholar 

  24. L. Kaufman, E. V. Clougherty, and R. J. Weiss, Acta Metall. 11, 323 (1963).

    Article  CAS  Google Scholar 

  25. R. D. K. Misra, S. Nayak, P. K. C. Venkatasurya, V. Ramuni, M. C. Somani, and L. P. Karjalainen, Metall. Mater. Trans. A 41, 2162 (2010).

    Article  Google Scholar 

  26. J. Gao, Y. Jiang, B. Deng, Z. Ge, and J. Li, Electrochim. Acta 55, 4837 (2010).

    Article  CAS  Google Scholar 

  27. S. Kuimalee, J. T. H. Pearce, and T. Chairuangsri, Chiang Mai J. Sci. 38, 47 (2011).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weng-Sing Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, ST., Hwang, WS. & Shyr, TW. Reverse transformation from α′ to γ in lightly and heavily cold-drawn austenitic stainless steel fibers. Met. Mater. Int. 19, 1181–1185 (2013). https://doi.org/10.1007/s12540-013-6003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-6003-1

Key words

Navigation