Skip to main content
Log in

Layer growth kinetics and wear resistance of martensitic precipitation hardening stainless steel plasma nitrocarburized at 460°C with rare earth addition

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

To study the effect of rare earth (RE) addition on low temperature plasma nitrocarburizing of martensitic precipitation hardening stainless steel, 17-4PH stainless steel was plasma nitrocarburized at 460 °C for different times with RE addition. The modified layers were tested by optical microscope, scanning electron microscope, X-ray diffraction, microhardness tester and pin-on-disc tribometer. The experimental results show that the layer depth of plasma RE nitrocarburized layer can be increased up to 56% compared with plasma nitrocarburizing without RE addition. Incorporation of RE element is beneficial to the formation of nitrogen and carbon expanded martensite (α′N). The surface microhardness of plasma RE nitrocarburized layer can be increased to 1286 HV and higher up to 80 HV than that obtained from the conventional treated one. The friction coefficient of martensitic stainless steel can be dramatically decreased by low temperature plasma nitrocarburizing with RE addition, and the friction coefficient of the modified specimens decrease gradually with increasing process time in the present test condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. L. Zhang and T. Bell, Surf. Eng. 1, 131 (1985).

    Google Scholar 

  2. E. Menthe, K. T. Rie, J. W. Schultze, and S. Simson, Surf. Coat. Technol. 74–75, 412 (1995).

    Article  Google Scholar 

  3. Y. Sun and T. Bell, Surf. Eng. 19, 331 (2003).

    Article  CAS  Google Scholar 

  4. I. Lee, Met. Mater. Int. 14, 77 (2008).

    Article  CAS  Google Scholar 

  5. N. W. Ahamad, I. Jauhari, S. A. A. Azis, and N. H. A. Aziz, Mater. Chem. Phys. 122, 454 (2010).

    Article  CAS  Google Scholar 

  6. D. J. Yoon, M. H. Lee, J. K. Jin, S. H. Kang, and T. H. Nam, Met. Mater. Int. 6, 429 (2000).

    Article  CAS  Google Scholar 

  7. M. K. Lei, Y. X. Ou, K. S. Wang, and L. Chen, Surf. Coat. Technol. 205, 4602 (2011).

    Article  CAS  Google Scholar 

  8. K. H. Lee, K. S. Nam, Y. M. Park, P. W. Shin, D. Y. Lee, and Y. S. Song, Met. Mater. Int. 8, 381 (2002).

    Article  CAS  Google Scholar 

  9. I. Lee, Current Appl. Phys. 9, S257 (2009).

    Article  Google Scholar 

  10. C. Zhao, C. X. Li, H. Dong, and T. Bell, Surf. Coat. Technol. 191, 195 (2005).

    Article  Google Scholar 

  11. Y. D. Wei, Z. R. Liu, and C. Y. Wang, Acta. Metall. Sinica (in Chinese) 19, B197 (1983).

    CAS  Google Scholar 

  12. Z. Y. Zhang, X. C. Lu, B. L. Han, and J. B. Luo, Mater. Sci. Eng. A 545, 194 (2007).

    Google Scholar 

  13. T. Bell, Y. Sun, Z. R. Liu, and M. F. Yan, Heat Treatment Met. 27, 1 (2000).

    CAS  Google Scholar 

  14. M. F. Yan and Z. R. Liu, Mater. Chem. Phys. 72, 97 (2001).

    Article  CAS  Google Scholar 

  15. X. H. Cheng and C. Y. Xie, Wear 254, 415 (2003).

    Article  CAS  Google Scholar 

  16. B. Larisch, U. Brusky, and H. J. Spies, Surf. Coat. Technol. 116–119, 205 (1999).

    Article  Google Scholar 

  17. T. Bell, Surf. Eng. 18, 415 (2002).

    Article  CAS  Google Scholar 

  18. Y. Cao, F. Ernst, and G. M. Michal, Acta Mater. 51, 4171 (2003).

    Article  CAS  Google Scholar 

  19. C. X. Li and T. Bell, Mater. Sci. Technol. 23, 355 (2007).

    Article  CAS  Google Scholar 

  20. C. Blawert, B. L. Mordike, G. A. Collins, K. T. Short, Y. Jirásková, O. Schneeweiss, and V. Perina, Surf. Coat. Technol. 128–129, 219 (2000).

    Article  Google Scholar 

  21. A. M. Abd El-Rahman, F. M. El-Hossary, T. Fitz, N. Z. Negm, F. Prokert, M. T. Pham, E. Richter, and W. Möller, Surf. Coat. Technol. 183, 268 (2004).

    Article  Google Scholar 

  22. M. Tsujikawa, N. Yamauchi, N. Ueda, T. Sone, and Y. Hirose, Surf. Coat. Technol. 193, 309 (2005).

    Article  CAS  Google Scholar 

  23. J. Buhagiar, H. Dong, and T. Bell, Surf. Eng. 23, 313 (2007).

    Article  CAS  Google Scholar 

  24. M. F. Yan, R. L. Liu, and D. L. Wu, Mater. Des. 31, 2270 (2010).

    Article  CAS  Google Scholar 

  25. R. L. Liu and M. F. Yan, Mater. Des. 31, 2355 (2010).

    Article  CAS  Google Scholar 

  26. R. L. Liu and M. F. Yan, Surf. Coat. Technol. 204, 2251 (2010).

    Article  CAS  Google Scholar 

  27. M. F. Yan and R. L. Liu, Appl. Surf. Sci. 256, 6065 (2010).

    Article  CAS  Google Scholar 

  28. R. L. Liu, M. F. Yan, Y. Q. Wu, and C. Z. Zhao, Mater. Charact. 61, 19 (2010).

    Article  CAS  Google Scholar 

  29. F. S. Chen and C. N. Chang, Surf. Coat. Technol. 173, 9 (2003).

    Article  CAS  Google Scholar 

  30. M. Esfandiari and H. Dong, Surf. Coat. Technol. 202, 466 (2007).

    Article  CAS  Google Scholar 

  31. C. X. Li and T. Bell, Corros. Sci. 48, 2036 (2006).

    Article  CAS  Google Scholar 

  32. Y. T. Xi, D. X. Liu, and D. Han. Surf. Coat. Technol. 202, 2577 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. L. Liu or M. F. Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R.L., Qiao, Y.J., Yan, M.F. et al. Layer growth kinetics and wear resistance of martensitic precipitation hardening stainless steel plasma nitrocarburized at 460°C with rare earth addition. Met. Mater. Int. 19, 1151–1157 (2013). https://doi.org/10.1007/s12540-013-5038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5038-7

Key words

Navigation