Skip to main content
Log in

Stencil printing behavior of lead-free Sn-3Ag-0.5Cu solder paste for wafer level bumping for Sub-100 μm size solder bumps

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Stencil printing for flip chip packaging using fine particle solder pastes is a low cost assembly solution with high throughput for fine pitch solder joint interconnects. The manufacturing challenges associated with both solder paste printing increases as electronic device size decreases due to trend of miniaturization in electronic components. Among multiple parameters, the two most important stencil printing parameters are squeegee pressure and printing speed. In this paper, the printing behavior of Pb free Sn-3Ag-0.5Cu solder paste with a particle size distribution of 2–12 μm for wafer level bumping using a stencil printing method (stencil opening dimension −30 μm) was evaluated by varying the printing speed and squeegee pressure to fabricate solder bumps with a sub 100 μm size. The optimal squeegee pressure and print speed for the defect free printing behavior and fairly uniform size distribution of reflowed paste were found to be 7 kgf and 20 mm/s, respectively. The average size of the reflowed printed paste decreased with the increasing squeegee pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. Kim, S. C. Hong, and J. P. Jung, Korean J. Met. Mater. 49, 388 (2011).

    CAS  Google Scholar 

  2. S. C. Hong, D. H. Jung, J. P. Jung, and W. J. Kim, Korean J. Met. Mater. 50, 152 (2012)

    CAS  Google Scholar 

  3. E. Suhir, Microelectronics J. 31, 839 (2000).

    Article  CAS  Google Scholar 

  4. E. H. Amalu, W. K. Lau, N. N. Ekere, R. S. Bhatti, S. Mallik, K. C. Otiaba, and G. Takyi, Microelectron. Eng. 88, 1610 (2011).

    Article  CAS  Google Scholar 

  5. S. Winkler, Advanced IC Packaging Markets and Trends, 2nd ed., pp.1–3, Electronic Trend Publication, California (1998).

    Google Scholar 

  6. R. R. Tummala, Fundamentals of Microsystems Packaging, 1st ed., pp.403–404, McGraw-Hill Professional, New York (2001).

    Google Scholar 

  7. R. Schuetz, Proc. of Micro Systems Technologies (MST03), p.161, Munich (2003).

    Google Scholar 

  8. B. Huang and N. C. Lee, Proc. IEEE Transaction on Technol. Symp., p.1, IEMT, SEMICON, San Jose (2002).

    Google Scholar 

  9. T. A. Nguty, B. Salam, R. Durairaj, and N. N Ekere, IEEE Trans. Elect. Pack. Manufac. 24, 249 (2001).

    Article  CAS  Google Scholar 

  10. P. Elenius, J. Leal, J. Ney, D. Stepniak, and S. Yeh, Proc. 49th ECTC, p.260 IEEE, San Diego (1999).

    Google Scholar 

  11. S. Nangalia, P. Deane, S. Bonafede, A. Huffman, C. Statler, and C. L. Rinne, Proc. Int Symp on Advanced Pkg. Mat., p.118, IEEE, Georgia (2000).

    Google Scholar 

  12. S. Aravamudhan, D. Santos, G. P. V. Diep, and F. Andres, Proc. IEEE Transaction on Technol. Symp., p.159, IEMT, SEMICON, San Jose (2002).

    Google Scholar 

  13. J. R. Morris and T. Wojcik, IEEE Trans. on Components, Hybrids, and Manufacturing Technology. 14, 560 (1991).

    Article  CAS  Google Scholar 

  14. R. W. Kay, E. de Gourcuff, M. P. Y. Desmulliez, G. J. Jackson, H. A. H. Steen, C. Liu, and P.P. Conway, Proc. 55th ECTC, p.848, IEEE, Lake Buena Vista (2005).

    Google Scholar 

  15. G. J. Jackson, M. W. Hendriksen, R. W. Kay, M. Desmulliez, R. K. Durairaj, and N. N. Ekere, Soldering & Surface Mount Technol. 17, 24 (2005).

    Article  CAS  Google Scholar 

  16. D. Manessis, R. Patzelt, A. Ostmann, R. Aschenbrenner, and H. Reichl, Microelectron. Reliab. 44, 797 (2004).

    Article  Google Scholar 

  17. I. Haslehurst and N. N. Ekere, J. of Electron. Manuf. 6, 307 (1996).

    Article  Google Scholar 

  18. J. S. Hwang, Solder Paste in Electronics Packaging, p.169, Van Nostrand Reinhold, New York (1989).

    Book  Google Scholar 

  19. M. Xiao, K. J. Lawless, and N. C. Lee, Soldering & Surface Mount Tech. 15, 4 (1993).

    Article  CAS  Google Scholar 

  20. T. Wilson and D. Bloomfield, Electron. Prod. 1, 39 (1995).

    CAS  Google Scholar 

  21. T. Wilson and D. Bloomfield, Electron. Prod. 2, 83 (1995).

    Google Scholar 

  22. S. H. Mannan, N. N. Ekere, N. I. Ismail, and E. K. Lo, IEEE Trans. Comp. Hybrids, Manufact. Technol. 17, 470 (1994).

    Article  Google Scholar 

  23. J. Pan and G. L. Tonkay, R. H. Storer, R. M. Sallade, D. J. Leandri, IEEE Trans. Elect. Pack. Mfg, 27, 125 (2004).

    Article  CAS  Google Scholar 

  24. J. Pan and G. L. Tonkay, Proc. ASME Int. Mech. Eng. Congr. Expo., p.75, Electron. Manufact. Issues, Nashville, USA (1999).

    Google Scholar 

  25. JEDEC Standard, J-STD-005 (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaepil Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Mallik, S., Ekere, N. et al. Stencil printing behavior of lead-free Sn-3Ag-0.5Cu solder paste for wafer level bumping for Sub-100 μm size solder bumps. Met. Mater. Int. 19, 1083–1090 (2013). https://doi.org/10.1007/s12540-013-5025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5025-z

Key words

Navigation