Skip to main content
Log in

Mechanical modeling of macroscopic behavior for anisotropic and heterogeneous metal alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present investigative work was focused on modeling the effect of through-thickness texture gradients on the global mechanical behavior of a rolled ferritic stainless steel sheet. The material was experimentally characterized according to the needs of the analysis. First, a homogeneous rolled sheet was analytically described, based on Hill’s formalism of generalized materials. Then, a heterogeneous sheet was analyzed through two analytic approaches. The predictive capability of the resulting approaches was also proven in relation to the choice of the pseudo-anisotropic coefficients selected from fictitious materials. Finally, the application of a simple method, called continuum mechanics of textured polycrystals, taking into account crystallographic considerations, was adopted. As a result, this method was found to be an effective way to model the mechanical behavior of an anisotropic and heterogeneous sheet, replicating the evolution of experimental yield stress and plastic strain ratio either in terms of evolution or in those of level values. An attempt to estimate the impact of low-texture gradients on the heterogeneity of any industrial metal sheet is also made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Engler, M.-Y. Huh, and C. N. Tome, Metall. Mater. Trans. A 31, 2299 (2000).

    Article  Google Scholar 

  2. H. F. G. de Abreu, A. D. S. Bruno, S. S. M. Tavares, R. P. Santos, and S. S. Carvalho, Mater. Charact. 57, 342 (2006).

    Article  Google Scholar 

  3. R. P. Siqueira, H. R. Z. Sandim, T. R. Oliveira, and D. Raabe, Mater. Sci. Eng. A 528, 3513 (2011).

    Article  Google Scholar 

  4. J. Mola, D. Chae, and B. C. De Cooman, Solid State Phenom. 160, 153 (2010).

    Article  CAS  Google Scholar 

  5. H. Yan, H. Bi, X. Li, and Z. Xu, Mater. Charact. 60, 65 (2009).

    Article  CAS  Google Scholar 

  6. D. C. Ahn, J. W. Yoon, and K. Y. Kim, Int. J. Mech. Sci. 51, 718 (2009).

    Article  Google Scholar 

  7. R. Hill, Proc. Roy. Soc. pp. 281–297, London (1948).

    Google Scholar 

  8. R. Hill, The Mathematical Theory of Plasticity, Oxford University Press (1950).

    Google Scholar 

  9. G. I. Taylor, J. Inst. Met. 62, 307 (1938).

    Google Scholar 

  10. T. E Buchheit, G. W. Wellman, and C. B. Corbett, Int. J. Plast. 21, 221 (2005).

    Article  Google Scholar 

  11. O. Chahaoui, M. L. Fares, D. Piot and F. Montheillet, J. Mater. Sci. 46, 1655 (2011).

    Article  CAS  Google Scholar 

  12. H. J. Shin, J. K. An, S. H. Park, and D. N. Lee, Acta. Mater. 51, 4693 (2003).

    Article  CAS  Google Scholar 

  13. O. V. Mishin, B. Bay, and D. Juul Jensen, Metall. Mater. Trans. A 31, 1653 (2000).

    Article  Google Scholar 

  14. P. Van Houtte, The MTM-FHM Software System, Version 2, Users Manual Katholieke Universiteit, Leuven, Belgium (1995).

    Google Scholar 

  15. O. Chahaoui, Ph.D. Thesis, Badji Mokhtar University of Annaba, Algeria (2010).

  16. H.-J. Bunge, Texture Analysis in Materials Science, pp.44–57, Butterworths & Co., London (1982).

    Google Scholar 

  17. M. L. Fares and F. Montheillet, Revue de Métallurgie 5, 615 (1996).

    Google Scholar 

  18. D. N. Lee, E. D. Kang, and T. Kobayashi, 3rd Int. Symp on Designing Processing and Properties of Advanced Engineering Materials, p.6, South Korea (2003).

    Google Scholar 

  19. H. Yan, H. Bi, X. Li, and Z. Xu, J. Mater. Process. Technol. 209, 2627 (2009).

    Article  CAS  Google Scholar 

  20. J. Hamada, N. Ono, and H. Inoue, ISIJ Int. 51, 1740 (2011).

    Article  CAS  Google Scholar 

  21. D. B. Lewis and F. B. Pickering, Met. Technol. 10, 264 (1983).

    Article  CAS  Google Scholar 

  22. Y. Yazawa, M. Muraki, Y. Kato, and O. Furukimi, ISIJ Int. 43, 1647 (2003).

    Article  CAS  Google Scholar 

  23. J. Hamada, K. Agata, and H. Inoue, Mater. Trans. 50, 752 (2009).

    Article  CAS  Google Scholar 

  24. F. Montheillet, P. Gilormini, and J. J. Jonas, Acta. Metall. 33, 705 (1985).

    Article  CAS  Google Scholar 

  25. P. Lequeu, Ph.D. Thesis, McGill University, Montreal (1986).

  26. P. Lequeu, F. Montheillet, and J. J. Jonas, AIME Symp., pp.189–212, Detroit (1985).

    Google Scholar 

  27. M. Darrieulat and F. Montheillet, Int. J. Plast. 19, 517 (2003).

    Article  Google Scholar 

  28. M. Darrieulat and F. Montheillet, Int. J. Mech. Sci. 38, 1273 (1996).

    Google Scholar 

  29. M.-Y. Huh and O. Engler, Mater. Sci. Eng. A 308, 74 (2011).

    Google Scholar 

  30. T. Clausmeyer, G. Gerstein, S. Bargman, B. Svendsen, A. H. vab den Booggaard, and B. Zillman, J. Mater. Sci. 48, 674 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Fares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chahaoui, O., Fares, M.L., Piot, D. et al. Mechanical modeling of macroscopic behavior for anisotropic and heterogeneous metal alloys. Met. Mater. Int. 19, 1005–1019 (2013). https://doi.org/10.1007/s12540-013-5013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5013-3

Key words

Navigation