Skip to main content
Log in

Influence of Ti additions on martensitic transformation and magnetic properties of cast Ni51Fe22−xGa27Tix shape memory alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of Ti addition on the microstructure, martensitic transformation, magnetic and mechanical properties of polycrystalline Ni51Fe22−x Ga27Ti x (x=0, 2 and 4) ferromagnetic shape memory alloy was investigated by scanning electron microscope, differential scanning calorimetry and X-ray diffraction. The results showed that the martensitic transformation temperature increases monotonously with the increase of fraction of Ti substitution for Fe. The increase in the martensite transformation temperatures should be related to the change of the electron concentration after the addition of Ti to Ni51Fe22−x Ga27Ti x alloys. According to the results of X-ray diffraction and magnetic properties, Ti has significant effect the structure of Ni51Fe22-x Ga27Ti x . Adding of 4 at% Ti altered the structure of the matrix from five-layered tetragonal martensite of Ni51Fe22Ga27 and Ni51Fe20Ga27Ti2 alloys to non-modulated tetragonal martensite. Magnetic properties proved that the alloy transits from ferromagnetic, five-layered tetragonal martensite, to paramagnetic, non-modulated martensite structure, with increasing Ti content to 4 at.%. Saturation magnetization, remnant magnetization and coercivity of the alloy were significantly influenced by Ti additions. Hardness values of Ni51Fe22Ga27 increased by the addition of Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ahmad Khalid, and S. Zameer Abbas, Mater. Charct. 62, 1134 (2011).

    Article  Google Scholar 

  2. K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).

    Article  CAS  Google Scholar 

  3. S. J. Murray, M. Marioni, S. M. Allen, R. C. O’Handley, and T. A. Lograsso, Appl. Phys. Lett. 77, 886 (2000).

    Article  CAS  Google Scholar 

  4. R. D. James, M. Wutting, Philo. Mag. A. 77, 1273 (1998).

    Article  CAS  Google Scholar 

  5. T. Kakeshita, T. Takeuchi, T. Fukuda, T. Saburi, R. Oshima, S. Muto, and K. Kisho, Mater. Trans. JIM 41, 882 (2002).

    Google Scholar 

  6. V. A. Chernenko, J. Pons, E. Casari, and A. E. Perekos, Mater. Sci. Eng. A 378, 357 (2004).

    Article  Google Scholar 

  7. Y. Q. Huo, J. Alloys Compd. 485, 300 (2009).

    Article  CAS  Google Scholar 

  8. A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, and K. Ishida, Appl. Phys. Lett. 77, 3054 (2000).

    Article  CAS  Google Scholar 

  9. K. Oikawa, T. Ota, Y. Sutou, T. Ohmori, R. Kainuma, and K. Ishida, Mater. Trans. 43, 2360 (2002).

    Article  CAS  Google Scholar 

  10. K. Oikawa, T. Ota, F. Gejima, T. Ohmori, R. Kainuma, and K. Ishida, Mater. Trans. 42, 2471 (2001).

    Google Scholar 

  11. H. E. Karaca, I. Karman, D. C. Lagoudas, H. J. Maier, and Y. I. Chumlyakov, Scripta Mater. 49, 831 (2003).

    Article  CAS  Google Scholar 

  12. Y. Q. Huo and J. G. Li, J. Alloys Compd. 480, 230 (2009).

    Article  CAS  Google Scholar 

  13. K. Oikawa, T. Ota, Y. Sutou, T. Ohmori, R. Kainuma, and K. Ishida, Mater. Trans. 43, 2360 (2002).

    Article  CAS  Google Scholar 

  14. Z. H. Liu, M. Zhang, Y. T. Cui, Y. Q. Zhou, W. H. Wang, G. H. Wu, X. X. Zhang, and G. Xiao, Appl. Phys. Lett. 83, 424 (2003).

    Article  Google Scholar 

  15. J. Liu, N. Scheerbaum, D. Hinz, and O. Gutfleisch, Acta Mater. 56, 3177 (2008).

    Article  CAS  Google Scholar 

  16. A. Dannenberg, M. Siewert, M. E. Gruner, M. Wuttig, and P. Entel, Physics Procedia 10, 144 (2010).

    Article  CAS  Google Scholar 

  17. J. Liu, H. X. Zheng, M. X. Xia, Y. L. Huang, and J. G. Li, Scripta Mater. 52, 935 (2005).

    Article  CAS  Google Scholar 

  18. H. X. Zheng, J. Liu, M. X. Xia, and J. G. Li, J. Alloys Compd. 387, 265 (2005).

    Article  CAS  Google Scholar 

  19. J. Liu, H. X. Zheng, M. X. Xia, and J. G. Li, Scripta Mater. 52, 955 (2005).

    Article  CAS  Google Scholar 

  20. H. Moritoa, K. Oikawa, A. Fujita, K. Fukamichi, R. Kainuma, and K. Ishida, Scripta Mater. 53, 1237 (2005).

    Article  Google Scholar 

  21. H. Morito, K. Oikawa, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida, and T. Takagi, J. Magn. Mater. 290, 850 (2005).

    Article  Google Scholar 

  22. H. E. Karaca, Ph. D. Thesis, pp.88–102, Kentucky University, Kentucky (2007).

  23. K. Rolfs, M. Chmielus, J. M. Guldbakke, R. C. Wimpory, A. Raatz, W. Petry, P. Müllner, and R. Scheider, Advanced Engineering Materials 14/8, 614 (2012).

    Article  Google Scholar 

  24. H. J. Yu, X. D. Jiang, H. Fu, and X. T. Zu, J. Alloys Compd. 490, 326 (2010).

    Article  CAS  Google Scholar 

  25. H. J. Yu, X. D. Jiang, H. Fu, and X. T. Zu, J. Alloys Compd. 490, 628 (2009).

    Article  Google Scholar 

  26. H. X. Zheng, M. X. Xia, J. Liu, Y. L. Huang, and J. G. Li, J. Alloys Compd. 385, 144 (2004).

    Article  CAS  Google Scholar 

  27. J. Sui, Z. Gao, H. Yu, Z. Zhang, and W. Cai, Scripta Mater. 59, 874 (2008).

    Article  CAS  Google Scholar 

  28. R. L. Wang, J. B. Yan, H. B. Xiao, L. S. Xu, V. V. Marchenkov, L. F. Xu, and C. P. Yang, J. Alloys Compd. 509, 6834 (2011).

    Article  CAS  Google Scholar 

  29. M. Chmielus, C. Witherspoon, K. Ullakko, P. Müllner, and R. Schneider, Acta Mater. 59, 2948 (2011).

    Article  CAS  Google Scholar 

  30. S. Aich, S. Das, I. A. Al-Omari, P. Alagarsamy, S. G. Chowdhury, M. hakraborty, J. E. Shield, and D. J. Sellmyer, J. Appl. Phys. 105, 07A943 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader El-Bagoury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Bagoury, N., Mohsen, Q., Kaseem, M.A. et al. Influence of Ti additions on martensitic transformation and magnetic properties of cast Ni51Fe22−xGa27Tix shape memory alloys. Met. Mater. Int. 19, 991–997 (2013). https://doi.org/10.1007/s12540-013-5011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5011-5

Key words

Navigation