Skip to main content
Log in

Numerical and experimental investigation of the grain refinement of liquid metals through cavitation processing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

An Erratum to this article was published on 11 March 2016

Abstract

An investigation was carried out on the grain refinement of molten AA5754 Aluminum alloy through intensive shearing. The results show intensive shearing via cavitation decreases the grain size significantly. The above hypothesis for structure refinement was evaluated and an experiment was performed to ensure the creditability of this assumption. Finally, it was simulated by computational fluid dynamics (CFD) modeling. It was understood that shearing is the responsible mechanism for creation of cavitation bubbles and further collapse of them. It was also concluded the pressure which generated from the collapse of the bubble is well enough for braking the oxide layer and wetting them. It was proved that breaking of the oxide layer wets the impurity particles upon collapse of cavitation bubbles and provides additional nuclei and additional grain refinement. The suggested mechanism includes improved wetting by breaking the oxide layer through fatigue via continuous hitting of the micro-jets, local undercooling upon the collapse of cavitation bubbles, and pre-solidification inside fine capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Greer, Phil. Trans. Math. Phys. Eng. Sci. 361, 479, (2003).

    Article  CAS  Google Scholar 

  2. J. P. Gabathuler and D. Barras, 2nd International Conference on Semisolid Processing of Alloys and Composites (eds. S.B. Brown, M.C. Flemings) p. 33, MIT/Boston, USA (1992).

  3. C. Vives, Metall. Trans. B 23, 189 (1992).

    Article  Google Scholar 

  4. Z. Fan, S. Ji and M. J. Bevis, PCT Patent, WO02/13993A1 (2000).

  5. D. G. Eskin, Zeitschrift für Metallkunde 87, 295 (1996).

    CAS  Google Scholar 

  6. Z. Fan, Y. Wang, Z. F. Zhang, M. Xia, H. T. Li, J. Xu, L. Granasy, and G. M. Scamans, Int. J. Cast. Met. Res. 22, 1 (2009).

    Article  Google Scholar 

  7. L. Nastac, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33, 012079 (2012).

    Article  Google Scholar 

  8. N. Eustathopoulos and B. Drevet, Mater. Sci. Eng. A 249, 176 (1998).

    Article  Google Scholar 

  9. C. E. Brennen, Cavitation & Bubble Dynamics, pp.112–124, Oxford University Press, Oxford, UK (1995).

    Google Scholar 

  10. G. I. Eskin and D. G. Eskin, Zeitschrift für Metallkunde 95, 682, (2004).

    CAS  Google Scholar 

  11. R. Haghayeghi, E.J. Zoqui, and H. Bahai, J. Alloys Compd. 481, 358, 2009.

    Article  CAS  Google Scholar 

  12. ASTM, Standard Test for Determining Average Grain Size, p.256, ASTM International, PA, USA (2002).

    Google Scholar 

  13. J. Lyman and J. Briggs, Appl. Phys. 21, 721 (1950).

    Google Scholar 

  14. M. H. Zimmerman, Sci. Amer. 208, 133 (1963).

    Article  Google Scholar 

  15. G. Eskin, Ultrasonics Sonochemistry 2, S137 (1995).

    Article  CAS  Google Scholar 

  16. R. Haghayeghi, Met. Mater. Int. 18, 777 (2012).

    Article  CAS  Google Scholar 

  17. I. G. Brodova, P. S. Popel, and G. I. Eskin, Liquid Metal Processing, pp.147–192, Taylor & Francis, London (2002).

    Google Scholar 

  18. W.M. Haynes, The CRC Handbook of Chemistry and Physics, 93th ed., pp.1126–1287, CRC Press, Canberra, Australia (2006).

    Google Scholar 

  19. G. I. Eskin, Ultrasonic Treatment of Light Alloy Melts, pp.1–334, Gordon & Breach Science Publisher, Amsterdam (1998).

    Google Scholar 

  20. L. I. Jiang and C. Hao-sheng, Tribology 28, 311 (2008).

    Google Scholar 

  21. M. Sussman, J. Comp. Phys. 187, 110 (2003).

    Article  Google Scholar 

  22. Fluent Incorporation, Gambit Tutorial Guide, Release 2.4.6, pp.1–305, Lebanon, NH 03766, USA (2000).

    Google Scholar 

  23. ANSYS INC., ANSYS Release 14.0, Coupled Field Analysis Guide, pp.1–162. ANSYS Inc. (2007).

    Google Scholar 

  24. S. Zeleski, Modelling Simulation and Design in Process Engineering, (eds. E.D. Gilles), p.97, SFB-Kolloquim, Stuttgart (s1999).

  25. J. U. Brackbill, D. B. Kothe, and C. Zemach, J. Comp. Phys. 100, 335 (1992).

    Article  CAS  Google Scholar 

  26. C. H. Yeh and W. J. Yang, J. Appl. Phys. 19, 3156 (1968).

    Article  Google Scholar 

  27. J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook, pp.406–509, CRC Press (2000).

    Book  Google Scholar 

  28. D. Basu, Sadhana 28, 589 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Haghayeghi.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12540-016-0001-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghayeghi, R., Ezzatneshan, E., Bahai, H. et al. Numerical and experimental investigation of the grain refinement of liquid metals through cavitation processing. Met. Mater. Int. 19, 959–967 (2013). https://doi.org/10.1007/s12540-013-5008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5008-0

Key words

Navigation