Skip to main content
Log in

Boundary layer and cooling rate and microstructure formation on the cooling sloping plate

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

During melt treatment by cooling sloping plate, laminar flow and turbulent flow exist on sloping plate surface commonly. The thickness of velocity boundary layer and the critical transfer distance from laminar flow to turbulent flow increase with the decrease of initial flow velocity. The thickness of temperature boundary layer increases with the increment of flow distance and the decrease of initial flow velocity. The melt cooling rate and melt thickness have an inverse proportion relationship. The melt cooling rate of cooling sloping plate process can reach 102–103 K/s and belongs to meta-rapid solidification scope. Uniform solute field and high cooling rate can lead to eruptive nucleation. In addition, a large quantity of heterogonous nuclei appears on the sloping plate surface, and vibrating flow can enable heterogonous nucleus to escape off the plate, which leads to nucleus multiplication. Under relative uniform solute field and high cooling rate, some grains can keep stable growth surface, go on growing with the round surface and finally maintain their globular structure. However, there are always some grains that grow along a certain preferred direction, but under vibrating flow their dendritic arms break and transform into near spherical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kaufmann, A. Mundl, P. J. Uggowitzer, R. Potzinger, and N. Ishibashi, Die Cast. Eng. 46, 4 (2002).

    Google Scholar 

  2. T. Motegi, Int. J. Mater. Prod. Technol. 2, 468 (2001).

    Google Scholar 

  3. Haga T, J. Mater. Process. Technol. 130, 558 (2002).

    Article  Google Scholar 

  4. S. M. Yang and W. Q. Tao, Heat Transfer, pp. 4–22, Higher Education Press, China (2006).

    Google Scholar 

  5. E. C. Legoretta, H. V. Atkinson, and H. Jones, J. Mater. Sci. 43, 5448 (2008).

    Article  Google Scholar 

  6. H. Han, S. F. Liu, L. G. Kang, and L. Y. Liu, J. Wuhan Univ. Technol. Mater. Sci. Ed. 23, 194 (2008).

    Article  CAS  Google Scholar 

  7. R. G. Guan, Z. Y. Zhao, H. Zhang, C. Lian, C. S. Lee, and C. M. Liu, J. Mater. Process. Technol. 212, 1430 (2012).

    Article  CAS  Google Scholar 

  8. Q. Z. Le and J. Z. Cui, The Basic Principles of Transmission, pp. 47–105, Metallurgical Industry Press, China (2005).

    Google Scholar 

  9. R. C. Ruhl, Mater. Sci. Eng. 1, 313 (1967).

    Article  Google Scholar 

  10. H. Mehrara, M. Nili-Ahmadabadi, B. Heidarian, S. Ashouri, and J. Ghiasinejad, Diffus. Defect. Data Part. B 141–143, 785 (2008).

    Google Scholar 

  11. R. Canyook, S. Petsut, S. Wisutmethangoon, M. C. Flemings, and J. Wannasin, Trans. Nonferrous Met. Soc. China 20, 1649 (2010).

    Article  CAS  Google Scholar 

  12. S. Ji, Z. Fan, and M. J. Bevis, Mater. Sci. Eng. A 299, 210 (2001).

    Article  Google Scholar 

  13. J. C. van Dam and F. H. Mischgofsky, J. Mater. Sci. 17, 989 (1982).

    Article  Google Scholar 

  14. L. Nastac and D. M. Stefannescu, Metall. Mater. Trans. A 27, 4061 (1996).

    Article  Google Scholar 

  15. Z. Fan, Int. Mater. Rev. 47, 49 (2002).

    Article  CAS  Google Scholar 

  16. R. G. Guan, S. C. Wang, J. L. Wen, and X. H. Liu, Mater. Sci. Technol. 22, 706 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Guo Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, R.G., Zhao, Z.Y., Chao, R.Z. et al. Boundary layer and cooling rate and microstructure formation on the cooling sloping plate. Met. Mater. Int. 19, 949–957 (2013). https://doi.org/10.1007/s12540-013-5007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5007-1

Key words

Navigation