Skip to main content
Log in

Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study presents the microstructure and high cycle fatigue performance of lap shear joints of dual phase steel (DP590) welded using gas metal arc welding (GMAW) and plasma arc welding (PAW) processes. High cycle fatigue tests were conducted on single and double lap joints under a load ratio of 0.1 and a frequency of 20 Hz. In order to establish a basis for comparison, both weldments were fabricated to have the same weld depth in the plate thickness. The PAW specimens exhibited a higher fatigue life, a gentle S-N slope, and a higher fatigue limit than the GMAW specimens. The improvement in the fatigue life of the PAW specimens was primarily attributed to the geometry effect that exhibited lower and wider beads resulting in a lower stress concentration at the weld toe where cracks initiate and propagate. Furthermore, the microstructural constituents in the heat-affected zone (HAZ) of the PAW specimens contributed to the improvement. The higher volume fraction of acicular ferrite in the HAZ beneath the weld toe enhanced the PAW specimen’s resistance to fatigue crack growth. The double lap joints displayed a higher fatigue life than the single lap joints without changing the S-N slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. K. Matlock and J. G. Speer, Mater. Manuf. Process. 25, 7 (2010).

    Article  CAS  Google Scholar 

  2. G. Buzzichelli and E. Anelli, ISIJ Int. 42, 1354 (2002).

    Article  CAS  Google Scholar 

  3. C. Y. Choi, I. B. Kim, Y. Kim, and Y. D. Park, Korean J. Met. Mater. 50, 136 (2012).

    CAS  Google Scholar 

  4. World Auto Steel, Advanced High Strength Steel (AHSS) Application Guidelines (version 4.1), http://www.worldautosteel.org/projects/ahss-guidelines/ (2009).

    Google Scholar 

  5. C. A. N. Lanzillotto and F. B. Pickering, Met. Sci. 16, 371 (1982).

    Article  CAS  Google Scholar 

  6. W. Bleck, S. Papaefthymiou, and A. Frehn, Steel Research International 75, 704 (2004).

    CAS  Google Scholar 

  7. D. A. Korzekwa, R. D. Lawson, D. K. Matlock, and G. Krauss, Scripta Metall. 14, 1023 (1980).

    Article  Google Scholar 

  8. P. H. Chang and A. G. Preban, Acta Metall. 33, 897 (1985).

    Article  CAS  Google Scholar 

  9. B. Yan, S. H. Lalam, and H. Zhu, SAE Technical Paper, 2005-01-0904 (2005).

    Google Scholar 

  10. Z. Burzic, V. Grabulov, S. Sedmak, and A. Sedmak, Materials and Technology 41, 163 (2007).

    CAS  Google Scholar 

  11. W. Fricke, Marine Structures 16, 185 (2003).

    Article  Google Scholar 

  12. M. Chiarelli, A. Lanciotti, and M. Sacchi, Int. J. Fatigue 21, 1099 (1999).

    Article  CAS  Google Scholar 

  13. J. J. F. Bonnen, R. Mandapati, H. T. Kang, R. M. Iyengar, A. K. Khosrovaneh, M. A. Amaya, K. Citrin, and H. C. Shih, SAE Technical Paper, 2009-01-0257 (2009).

    Google Scholar 

  14. D. Anderson, J. Hunt, C. Jiang, and Y. Sang, SAE Technical Paper, 2010-01-0449 (2010).

    Google Scholar 

  15. Z. Feng, Y. Sang, C. Jiang, J. Chiang, and M. Kuo, SAE Technical Paper, 2009-01-0256 (2009).

    Google Scholar 

  16. Z. D. Perovi, Archives of Materials Science 28, 113 (2007).

    Google Scholar 

  17. N. Kapustka, C. Conrardy, S. Babu, and C. Albright, Weld. J. 87, 135–s (2008).

    Google Scholar 

  18. J. C. McGlone, Metal Construction 14, 378 (1982).

    Google Scholar 

  19. S. R. Gupta and N. Arora, Indian Welding Journal 24, 127 (1991).

    Google Scholar 

  20. V. Gunaraj and N. Murugan, J. Mater. Process. Tech. 88, 266 (1999).

    Article  Google Scholar 

  21. S. Kou, Welding Metallurgy, pp.232–234, John Wiley & Sons, New Jersey (2003).

    Google Scholar 

  22. E. Biro, J. R. McDermid, J. D. Embury, and Y. Zhous, ASM Int. 2, 1007 (2010).

    Google Scholar 

  23. M. Xia, E Biro, Z. Tian, and Y. N Zhous, ISIJ Int. 48, 809 (2008).

    Article  CAS  Google Scholar 

  24. V. H. Hernandez, S. S. Nayak, and Y. Zhous, ASM Int. 3, 1007 (2011).

    Google Scholar 

  25. K. Chongmin and D. E. Diesbury, ASTM STP 776, 172 (1982).

    Google Scholar 

  26. C. D. Donne, G. Biallas, T. Ghidini, and G. Rainbeaux, The Welding Institute 26, 28 (2000).

    Google Scholar 

  27. P. Darcis, T. Lassen, and N. Recho, Weld. J. 85, 19–s (2006).

    Google Scholar 

  28. W. D. Pilkey and D. F. Pilkey, Peterson’s Stress Concentration Factors, pp.35–42, John Wiley & Sons, New Jersey (2008).

    Google Scholar 

  29. F. V. Lawrence, S. D. Dimitrakis, and W. H. Munse, ASM Handbook Volume 19: Fatigue and Fracture, pp.274–286, ASM Int., Ohio (1996).

    Google Scholar 

  30. Y. Ito and M. Nakanishi, Sumitomo Search 15, 42 (1976).

    CAS  Google Scholar 

  31. S. S. Babu, Current Opinion in Solid State and Materials Science 8, 267 (2004).

    Article  CAS  Google Scholar 

  32. H. K. D. H. Bhadeshia and L. E. Svensson, Mathematical Modeling of Weld Phenomena (eds. H. Cerjak and K. E. Easterling), pp.109–182, Institute of Materials, London (1993).

  33. T. W grzyn, Archives of Materials Science and Engineering 47, 57 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahiale, G.K., Oh, YJ., Choi, WD. et al. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes. Met. Mater. Int. 19, 933–939 (2013). https://doi.org/10.1007/s12540-013-5005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5005-3

Key words

Navigation