Skip to main content
Log in

Grain refinement and tensile strength of carbon nanotube-reinforced Cu matrix nanocomposites processed by high-pressure torsion

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In recent years, the processing of metallic materials via severe plastic deformation has been widely applied to manufacture bulk specimens of ultrafine grained/nanocrystalline structures. In this study, bulk nanocomposites of carbon nanotube-reinforced Cu were manufactured by consolidation of mixtures of coarse grained Cu powders and CNTs of two volume fractions (5 vol% and 10 vol%) using high-pressure torsion, a typical SPD method. The effects of CNT reinforcements on the microstructural evolution of the Cu matrix were investigated using electron backscatter diffraction and scanning/transmission electron microscopy; the results showed that the Cu matrix grain size was reduced to ∼114 nm, and the CNTs were well dispersed in the matrix. Due to the effect of the UFG Cu and CNTs, the tensile strength (350 MPa) of the nanocomposite was higher than that (190 MPa) of Cu processed by the powder HPT process without CNTs. However, the Cu-CNT 10 vol% indicated a decreased tensile strength due to an increased interface area between the matrix and CNTs at high volume fractions of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).

    Article  CAS  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  3. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).

    Article  CAS  Google Scholar 

  4. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).

    Article  CAS  Google Scholar 

  5. A. A. Mamedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P. Wicksted, and A. Hirsch, Nat. Mater. 1, 190 (2002).

    Article  CAS  Google Scholar 

  6. E. T. Thostenson, Z. Ren, and T.-W. Chou, Compos. Sci. Technol. 61, 1899 (2001).

    Article  CAS  Google Scholar 

  7. M. Y. Song, Y. J. Kwak, B. -S. Lee, H. R. Park, and B. -G. Kim, Korean J. Met. Mater. 49, 989 (2011).

    Article  CAS  Google Scholar 

  8. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  CAS  Google Scholar 

  9. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, JOM 58, 33 (2006).

    Article  Google Scholar 

  10. Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev, and T. G. Langdon, J. Mater. Res. 11, 1880 (1996).

    Article  CAS  Google Scholar 

  11. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008).

    Article  CAS  Google Scholar 

  12. A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baró, J. A. Szpunar, and T. G. Langdon, Acta Mater. 51, 753 (2003).

    Article  CAS  Google Scholar 

  13. V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev, and R. Z. Valiev, Mater. Sci. Eng. A 282, 78 (2000).

    Article  Google Scholar 

  14. I. V. Alexandrov, K. Zhang, A. R. Kilmametov, K. Lu, and R. Z. Valiev, Mater. Sci. Eng. A 234-236, 331 (1997).

    Article  Google Scholar 

  15. E. Y. Gutmanas, Prog. Mater. Sci. 34, 261 (1990).

    Article  CAS  Google Scholar 

  16. T. Tokunaga, K. Kaneko, K. Sato, and Z. Horita, Scripta Mater. 58, 735 (2008).

    Article  CAS  Google Scholar 

  17. H. Li, A. Misra, Y. Zhu, Z. Horita, C. C. Koch, and T. G. Holesinger, Mater. Sci. Eng. A 523, 60 (2009).

    Article  Google Scholar 

  18. H. Li, A. Misra, Z. Horita, C. C. Koch, N. A. Mara, P. O. Dickerson, and Y. Zhu, Appl. Phys. Lett. 95, (2009).

  19. S. H. Joo, S. C. Yoon, C. S. Lee, D. H. Nam, S. H. Hong, and H. S. Kim, J. Mater. Sci. 45, 4652 (2010).

    Article  CAS  Google Scholar 

  20. Y. Estrin, Dislocation-Density-Related Constitutive Modeling, in Unified Constitutive Laws of Plastic Deformation, pp. 69–106, Academic Press, New York (1996).

    Book  Google Scholar 

  21. DEFORM Software, Scientific Forming Technologies Corp., Columbus, OH (2007).

  22. R. B. Figueiredo, P. R. Cetlin, and T. G. Langdon, Mater. Sci. Eng. A 528, 8198 (2011).

    Article  CAS  Google Scholar 

  23. D. J. Lee, E. Y. Yoon, L. J. Park, and H. S. Kim, Scripta Mater. 67, 384 (2012).

    Article  CAS  Google Scholar 

  24. X. H. An, S. D. Wu, Z. F. Zhang, R. B. Figueiredo, N. Gao, and T. G. Langdon, Scripta Mater. 63, 560 (2010).

    Article  CAS  Google Scholar 

  25. Z. Horita and T. G. Langdon, Mater. Sci. Eng. A 410–411, 422 (2005).

    Google Scholar 

  26. N. Lugo, N. Llorca, J. M. Cabrera, and Z. Horita, Mater. Sci. Eng. A 477, 366 (2008).

    Article  Google Scholar 

  27. E. Y. Yoon, D. J. Lee, D. H. Ahn, E. S. Lee, and H. S. Kim, J. Mater. Sci. 47, 7770 (2012).

    Article  CAS  Google Scholar 

  28. T. Tokunaga, K. Kaneko, and Z. Horita, Mater. Sci. Eng. A 490, 300 (2008).

    Article  Google Scholar 

  29. P. Jenei, E. Y. Yoon, J. Gubicza, H. S. Kim, J. L. Lábár, and T. Ungár, Mater. Sci. Eng. A 528, 4690 (2011).

    Article  Google Scholar 

  30. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: Imaging, Plenum Press (1996).

    Book  Google Scholar 

  31. Y. Feng, H. L. Yuan, and M. Zhang, Mater. Charact. 55, 211 (2005).

    Article  CAS  Google Scholar 

  32. S. M. L. Nai, J. Wei, and M. Gupta, Mater. Sci. Eng. A 423, 166 (2006).

    Article  Google Scholar 

  33. S. R. Dong, J. P. Tu, and X. B. Zhang, Mater. Sci. Eng. A 313, 83 (2001).

    Article  Google Scholar 

  34. K. T. Kim, S. I. Cha, and S. H. Hong, Mater. Sci. Eng. A 430, 27 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, E.Y., Lee, D.J., Park, B. et al. Grain refinement and tensile strength of carbon nanotube-reinforced Cu matrix nanocomposites processed by high-pressure torsion. Met. Mater. Int. 19, 927–932 (2013). https://doi.org/10.1007/s12540-013-5004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5004-4

Key words

Navigation