Metals and Materials International

, Volume 19, Issue 4, pp 851–854 | Cite as

Formation of an interstitially alloyed phase in Mg/C60 composite

  • Jaehyuck Shin
  • Sock-yeon Yoon
  • Hyunjoo Choi
  • Seeun Shin
  • Donghyun Bae


The formation of an interstitially alloyed phase and its effects on mechanical properties are investigated for a magnesium-based composite containing fullerene (Mg/C60). The Mg/C60 composite was fabricated using the ball milling method followed by hot rolling and then the composite sheet was annealed at 425°C for up to 37 h. The fullerene was dispersed during the ball milling process and it was decomposed. The carbon atoms from the decomposed fullerene diffused into the magnesium matrix, which increasingly occupied the octahedral sites of the magnesium as the annealing continued. The formed interstitially alloyed phase expanded as the annealing time increased, and magnesium carbide was formed after 37 h. Vickers hardness value increased as the interstitially alloyed phase continuously formed and it decreased when the magnesium carbide was formed, because the carbon atoms at the magnesium interstices may interact with moving dislocations, resulting in an increase in the hardness of the magnesium.

Key words

composites metals fullerenes powder processing mechanical alloying/milling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. G. Seebauer and K. W. Noh, Mater. Sci. Eng. R 70, 151 (2010).CrossRefGoogle Scholar
  2. 2.
    L. Shao, J. Liu, Q. Y. Chen, and W. K. Chu, Mater. Sci. Eng. R 42, 65 (2003).CrossRefGoogle Scholar
  3. 3.
    K. Özdogãn and S. Berber, Int. J. Hydrog. Energy 34, 5213 (2009).CrossRefGoogle Scholar
  4. 4.
    X. He, D. Xuea, and K. Kitamura, Mater. Sci. Eng. B 120, 27 (2005).CrossRefGoogle Scholar
  5. 5.
    R. Falster and V. V. Voronkov, Mater. Sci. Eng. B 73, 87 (2000).CrossRefGoogle Scholar
  6. 6.
    M. J. Iqbal and S. Farooq, Mater. Sci. Eng. B 136, 140 (2007).CrossRefGoogle Scholar
  7. 7.
    M. Rajabi, A. Simchi, M. Vahidi, and P. Davamia, J. Alloys Compd. 466, 111 (2008).CrossRefGoogle Scholar
  8. 8.
    D. B. Witkin and E. J. Lavernia, Prog. Mater. Sci. 51, 1 (2006).CrossRefGoogle Scholar
  9. 9.
    H. J. Choi, J. H. Shin, and D. H. Bae, Carbon 48, 3700 (2010).CrossRefGoogle Scholar
  10. 10.
    J. W. Ahn, D. Y. Hwang, G. H. Kim and H. S. Kim, Korean. J. Met. Mater. 49, 454 (2011).CrossRefGoogle Scholar
  11. 11.
    G. Garcés, E. Õnorbe, P. Pérez, I. A. Denks, and P. Adeva, Mater. Sci. Eng. A 523, 21 (2009).CrossRefGoogle Scholar
  12. 12.
    F. Wu and J. Zhu, Comp. Sci. Technol. 57, 661 (1997).CrossRefGoogle Scholar
  13. 13.
    Y. Shimizu, S. Miki, T. Soga, I. Itoh, H. Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y. A. Kim, M. Endo, S. Morimoto, and A. Koide, Scr. Mater. 58, 267(2008).CrossRefGoogle Scholar
  14. 14.
    Q. Li, A. Viereckl, C. A. Rottmair, and R. F. Singer, Comp. Sci. Technol. 69, 1193 (2009).CrossRefGoogle Scholar
  15. 15.
    H. Watanabe, M. Fukusumi, K. Ishikawa, and T. Shimizu, Scr. Mater. 54, 1575 (2006).CrossRefGoogle Scholar
  16. 16.
    H. Watanabe, M. Sugioka, M. Fukusumi, K. Ishikawa, M. Suzuki, and T. Shimizu, Mater. Trans. 47, 999 (2006).CrossRefGoogle Scholar
  17. 17.
    P. Karen, A. Kjekshus, Q. Huang, and V. L. Karen, J. Alloy Compd. 282, 72 (1999).CrossRefGoogle Scholar
  18. 18.
    H. Kwon, D. H. Park, J. F. Silvain, and A. Kawasaki, Compos. Sci. Technol. 70, 526 (2010).CrossRefGoogle Scholar
  19. 19.
    D. Osetzky, Carbon 12, 517 (1974).CrossRefGoogle Scholar
  20. 20.
    M. O. Lai, L. Lu, and W. Laing, Compos. Struc. 66, 301 (2004).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jaehyuck Shin
    • 1
  • Sock-yeon Yoon
    • 1
  • Hyunjoo Choi
    • 1
  • Seeun Shin
    • 1
  • Donghyun Bae
    • 1
  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulKorea

Personalised recommendations