Skip to main content
Log in

Electrodeposition, characterization and long term stability of NiW and NiWZn coatings on copper substrate in alkaline solution

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper describes the electrodeposition of Ni, NiW and NiWZn coatings onto copper surfaces from electrolyte solutions containing Na3C6H5O7, Na2WO4, NiSO4 and ZnSO4. The electrocatalytic effects of electrodeposited coatings were investigated for hydrogen evolution reactions in 1 M NaOH solution. Surface characterization studies were carried out by energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy and cross-section analysis. The effect of operating conditions on the chemical composition, microstructure and electrocatalytic properties of Ni-W coatings was studied. The Zn ions were used to improve the active surface area and catalytic activity of the electrodeposited surface. The electrocatalytic activity of NiW and NiWZn coated electrodes for the hydrogen evolution reaction in alkaline solution was compared with that of an electrodeposited Ni electrode and copper substrate by using cathodic polarization curves and electrochemical impedance spectroscopy techniques over 96 h of electrolysis. The results proved that the NiWZn coated electrode showed better electrocatalytic activity and durability than bare Cu, Ni and NiW coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Solmaz and G. Kardaş, Energy Convers. Manage. 48, 583 (2007).

    Article  CAS  Google Scholar 

  2. M. P. M. Kaninski, V. M. Nikolic, G. S. Tasic, and Z. L. Rakocevic, Int. J. Hydrogen Energ. 34, 703 (2009).

    Article  Google Scholar 

  3. A. A. Gurten, K. Kayakirilmaz, B. Yazici, and M. Erbil, Int. J. Hydrogen Energ. 28, 1083 (2003).

    Article  CAS  Google Scholar 

  4. M. Ma, V. S. Donepudi, G. Sandi, Y. K. Sun, and J. Prakash, Electrochim. Acta. 49, 4411 (2004).

    Article  CAS  Google Scholar 

  5. N. V. Krstajic, V. D. Jovic, L. G. Krstajic, B. M. Jovic, A. L. Antozzi, and G. N. Martelli, Int. J. Hydrogen Energ. 33, 3676 (2008).

    Article  CAS  Google Scholar 

  6. T. Yamasaki, P. SchloBmacher, K. Ehrlich, and Y. Ogino, Nanostruct. Mater. 10, 375 (1998).

    Article  CAS  Google Scholar 

  7. J. Kubisztal, A. Budniok, and A. Lasia, Int. J. Hydrogen Energ. 32, 1211 (2007).

    Article  CAS  Google Scholar 

  8. M. Donten, H. Cesiulis, and Z. Stojek, Electrochim. Acta. 45, 3389 (2000).

    Article  CAS  Google Scholar 

  9. Y. Wu, D. Chang, D. Kim, and S. Kwon, Surf. Coat. Technol. 173, 259 (2003).

    Article  CAS  Google Scholar 

  10. R. Solmaz, A. Döner, İ. Şahin, A.O. Yce, G. Kardaş, B. Yazıcı and M. Erbil, Int. J. Hydrogen Energ. 34, 7910 (2009).

    Article  CAS  Google Scholar 

  11. M. Obradovic, J. Stevanović, R. Stevanović, and A. Despić, J. Electroanal. Chem. 491, 188 (2000).

    Article  CAS  Google Scholar 

  12. I. Mizushima, P. T. Tang, H. N. Hansen, and M. A. J. Somers, Electrochim. Acta. 51, 888 (2005).

    Article  CAS  Google Scholar 

  13. P. Lima-Neto, A. N. Correi, R. A. C. Santana, R. P. Colares, E. B. Barros, P. N. S. Casciano, and G. L. Vaz, Electrochim. Acta. 55, 2078 (2010).

    Article  Google Scholar 

  14. E. Navarro-Flores, Z. Chong, and S. Omanovic, J. Mol. Catal. A-Chem. 226, 179 (2005).

    Article  CAS  Google Scholar 

  15. M. Metikos-Hukovic, Z. Grubac, N. Radic, and A. Tonej, J. Mol. Catal. A-Chem. 249, 172 (2006).

    Article  CAS  Google Scholar 

  16. Y. Surme, A. A. Gurten, E. Bayol, and E. Ersoy, J. Alloy. Compd. 485, 98 (2009).

    Article  Google Scholar 

  17. V. S. Bagotsky, Fundamentals of Electrochemistry, 2nd ed., John Wiley&Sons, New Jersey (2006).

    Google Scholar 

  18. L. J. Song and H. M. Meng, Int. J. Hydrogen Energ. 35, 10060 (2010).

    Article  CAS  Google Scholar 

  19. I. Herraiz-Cardona, E. Ortega, and V. Prez-Herranz, Electrochim. Acta. 56, 1308 (2011).

    Article  CAS  Google Scholar 

  20. H. Hu, Y. Fan, and H. Liu, Int. J. Hydrogen Energ. 35, 3227 (2010).

    Article  CAS  Google Scholar 

  21. K. R. Sriraman, S. G. S. Raman, and S. K. Seshadri, Mat. Sci. Eng. A-Struct. 418, 303 (2006).

    Article  Google Scholar 

  22. D. Risovic, S. M. Poljac, K. Furic, and M. Gojo, Appl. Surf. Sci. 255, 3063 (2008).

    Article  CAS  Google Scholar 

  23. M. E. Mert and G. Kardas, J. Alloy. Compd. 509, 9190 (2011).

    Article  CAS  Google Scholar 

  24. R. K. Shervedani and A. R. Madram, Int. J. Hydrogen Energ. 33, 2468 (2008).

    Article  Google Scholar 

  25. R. Solmaz, G. Karda, M. Culha, B. Yazlcl, and M. Erbil, Electrochim. Acta. 53, 5941 (2008).

    Article  CAS  Google Scholar 

  26. M. M. Jaksic, Int. J. Hydrogen Energ. 26, 559 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yavuz Sürme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sürme, Y., Gürten, A.A. & Kayakırılmaz, K. Electrodeposition, characterization and long term stability of NiW and NiWZn coatings on copper substrate in alkaline solution. Met. Mater. Int. 19, 803–812 (2013). https://doi.org/10.1007/s12540-013-4020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-4020-8

Key words

Navigation