Skip to main content
Log in

Rheological behavior of molten Al-SiC slurries and comparison of their behavior with metallic slurries

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study a new precise rotational viscometer was developed and used to measure the viscosity of molten A356 alloy containing 5, 15, and 25vol.% of 90–106 μm SiC particles at 650 and 690 °C. Three types of typical curves viscosity (η) versus volume fraction of SiC particles, shear time (t), and shear rate (γ) were derived advantage from the results of viscosity measurements. It would present the viscosity got lowered by decreasing particle volume fraction and by increasing the amounts of shear time and shear rate. In the next step, the influence of the number of aggregates on apparent viscosity was studied by the special tests, developed in this research. Also the formation of aggregates in Al-SiC composite slurries was explained and compared with metallic slurries. It concluded that the origin of aggregation in Al-SiC slurries was long range electrical forces while in metallic slurries it was micro welds between particles. it would show the rheological behavior of Al-SiC slurries could be justified according to the nature and the numbers of their aggregates. At the end, the implications of findings in order to predict the gradient of particles in functionally graded Al-SiC composites, produced by casting, were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Asthana, J. Mater. Sci. Lett. 19, 2259 (2000).

    Article  CAS  Google Scholar 

  2. A. Ourdjini, K. C. Chew, and B. T. Khoo, J. Mater. Process. Technol. 116, 72 (2001).

    Article  CAS  Google Scholar 

  3. A. Kolsgaard and S. Brusethaug, Mater. Sci. Eng. A 173, 213 (1993).

    Article  Google Scholar 

  4. Y. Watanabe, N. Yamanaka, and Y. Fukui, Composites Part A 29, 595 (1998).

    Article  Google Scholar 

  5. T. Ogawa, Y. Watanabe, H. Sato, I. S. Kim, and Y. Fukui, Composites Part A 37, 2194 (2006).

    Article  Google Scholar 

  6. H. C. Brinkman and J. Chem. Phys. 20, 571 (1952).

    CAS  Google Scholar 

  7. H. K. Moon, J. A. Cornie, and M. C. Flemings, Mater. Sci. Eng. A 144, 253 (1991).

    Article  Google Scholar 

  8. C. J. Quaak and W. H. Kool, Mater. Sci. Eng. A 188, 277 (1994).

    Article  Google Scholar 

  9. C. J. Quaak, M. G. Horsten, and W. H. Kool, Mater. Sci. Eng. A 183, 247 (1994).

    Article  CAS  Google Scholar 

  10. M. Mada and F. Ajersch, Mater. Sci. Eng. A 212, 157 (1996).

    Article  Google Scholar 

  11. W. R. Loue, S. Landkroon, and W. H. Kool, Mater. Sci. Eng. A 151, 255 (1992).

    Article  Google Scholar 

  12. D. Lee, S. W. Park, and D. B. Lee, Met. Mater. Int. 14, 419 (2008).

    Article  CAS  Google Scholar 

  13. K. H. Baik, Met. Mater. Int. 10, 133 (2004).

    Article  CAS  Google Scholar 

  14. K. Hanada, Y. Murakoshi, H. Negishi, and T. Sano, Met. Mater. Int. 4, 247 (1998).

    CAS  Google Scholar 

  15. D. J. Lloyd, H. Lagace, A. McLeod, and P. L. Morris, Mater. Sci. Eng. A 107, 73 (1989).

    Article  Google Scholar 

  16. D. J. Lloyd, Compos. Sci. Technol. 35, 159 (1989).

    Article  CAS  Google Scholar 

  17. M. Ghahremanian, B. Niroumand, and M. Panjepour, Met. Mater. Int. 18, 149 (2012).

    Article  CAS  Google Scholar 

  18. V. Agarwala and D. Dixit, Trans. Jpn. Inst. Met. 22, 521 (1981).

    CAS  Google Scholar 

  19. G. Ramani, R. M. Pillai, B. C. Pai, and K. G. Satyanarayana, Scr. Metall. Mater. 28, 405 (1993).

    Article  CAS  Google Scholar 

  20. D. S. B. Heidary and F. Akhlaghi, Metall. Mater. Trans. A 41, 3435 (2010).

    Article  Google Scholar 

  21. P. A. Joly and R. Mehrabian, J. Mater. Sci. 11, 1393 (1976).

    Article  CAS  Google Scholar 

  22. A. R. A. McLelland, N. G. Henderson, H. V. Atkinson, and D. H. Kirkwood, Mater. Sci. Eng. A 232, 110 (1997).

    Article  Google Scholar 

  23. N. Apaydin and K. V. Prabhakar, Mater. Sci. Eng. 46, 145 (1980).

    Article  CAS  Google Scholar 

  24. B. V. Derjaguin and L. Landau, Acta Physicochimica U. S. S. R. 14, 633 (1941).

    Google Scholar 

  25. D. Wang and R. A. Overfelt, Int. J. Thermophys. 23, 1063 (2002).

    Article  CAS  Google Scholar 

  26. Y. Fukui and Y. Watanabe, Metall. Mater Trans. A, 27, 4145 (1996).

    Article  Google Scholar 

  27. D. S. B. Heidary and F. Akhlaghi, Acta Mater. 59, 4556 (2011).

    Article  CAS  Google Scholar 

  28. R. Rodriguez-Castro and M. H. Kelestemur, J. Mater. Sci. 37, 1813 (2002).

    Article  CAS  Google Scholar 

  29. M. Gupta and C. Y. Loke. Mater. Sci. Eng. A 276, 210 (2000).

    Article  Google Scholar 

  30. Y. Watanabe, I. Soo Kim, and Y. Fukui, Met. Mater. Int. 11, 391 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sohrabi Baba Heidary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidary, D.S.B., Akhlagh, F. Rheological behavior of molten Al-SiC slurries and comparison of their behavior with metallic slurries. Met. Mater. Int. 19, 767–775 (2013). https://doi.org/10.1007/s12540-013-4016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-4016-4

Key words

Navigation