Skip to main content
Log in

Thermal desorption spectroscopy study of the interaction of hydrogen with TiC precipitates

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Thermal desorption spectroscopy (TDS) was used to study hydrogen-trap interactions for an experimental steel (0.025 wt%C-0.09%Ti). After lab processing, the microstructure consisted of small (∼20 μm) ferrite grains containing nanometer TiC precipitates. After hot and cold rolling, the material contained some hydrogen (originated from the hot rolling) in irreversible traps, the TiC precipitates. After annealing in hydrogen, the TDS spectra consisted of a high temperature peak, attributed to irreversible trapping by TiC precipitates. Annealing slightly increased the TiC precipitate size. Both the peak temperature and peak area increased with increasing annealing temperature. The increase in peak area occurred together with the increase in TiC precipitate size. The TDS spectra for samples annealed at 800 °C, and electrochemically charged, contained (i) a low temperature peak which decreased in height with increasing desorption time, and (ii) a high temperature peak that did not change significantly with desorption time, and was similar to those after gaseous charging. The low temperature peak was attributed to reversible traps such as grain boundaries, whereas the high temperature peak was attributed to irreversible trapping by TiC precipitates. The high temperature TDS peak was composed of constituent peaks with essentially the same activation energy of 145 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Duprez, K. Verbeken, and M. Verhaege, Proceedings International Conference on Effects of Hydrogen on Materials (eds. B.P. Somerday, P. Sofronis and R. Jones), p.62, ASM Int., US (2009).

  2. D. Pérez Escobar, C. Miñambres, L. Duprez, K. Verbeken, and M. Verhaege, Corros. Sci. 53, 3166 (2011).

    Article  Google Scholar 

  3. D. Pérez Escobar, K. Verbeken, L. Duprez, and M. Verhaege, Mater. Sci. Eng. A 551, 50 (2012).

    Article  Google Scholar 

  4. D. Pérez Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, and K. Verbeken, Corros. Sci. 65, 199 (2012).

    Article  Google Scholar 

  5. D. Pérez Escobar, T. Depover, L. Duprez, K. Verbeken, and M. Verhaege, Acta Mater. 60, 2593 (2012).

    Article  Google Scholar 

  6. Y. J. Ren and C. L. Zeng, J. Power Sources 171, 778 (2007).

    Article  CAS  Google Scholar 

  7. Y. Hirohata, D. Motojima, T. Hino, and S. Sengoku, J. Nucl. Mater. 313–316, 172 (2003).

    Article  Google Scholar 

  8. S. Yamasaki and T. Takahashi, Tetsu-to-Hagane 83, 454 (1997).

    CAS  Google Scholar 

  9. H. Asahi, D. Hirakami, and S. Yamasaki, ISIJ. Int. 43, 527 (2003).

    Article  CAS  Google Scholar 

  10. M. Ohnuma, J. I. Suzuki, F. G. Wei, and K. Tsuzaki, Scripta Mater. 58, 142 (2008).

    Article  CAS  Google Scholar 

  11. F. G. Wei and K. Tsuzaki, Proceedings International Conference on Effects of Hydrogen on Materials (eds. B.P. Somerday, P. Sofronis and R. Jones), p.456, ASM Int., US (2009).

  12. T. Asaoka, G. Lapasset, M. Aucouturier, and P. Lacombe, Corros. NACE. 34, 39 (1978).

    Article  CAS  Google Scholar 

  13. G. M. Pressouyre and I. M. Bernstein, Metall. Trans. A 9, 1571 (1978).

    Article  Google Scholar 

  14. H. G. Lee and J. Y. Lee, Acta Metall. 32, 131 (1984).

    Article  CAS  Google Scholar 

  15. S. M. Lee and J. Y. Lee, Acta Metall. 35, 2695 (1987).

    Article  CAS  Google Scholar 

  16. F. G. Wei and K. Tsuzaki, Metal. Mater. Trans. A 37, 331 (2006).

    Article  Google Scholar 

  17. J. Takahashi, K. Kawakami, Y. Kobayashi, and T. Tarui, Scripta Mater. 63, 261 (2010).

    Article  CAS  Google Scholar 

  18. F. G. Wei, T. Hara, and K. Tsuzaki, Metal. Mater. Trans. B 35, 587 (2004).

    Article  Google Scholar 

  19. F. G. Wei, T. Hara, and K. Tsuzaki, Proceedings International Conference on Effects of Hydrogen on Materials (eds. B. P. Somerday, P. Sofronis and R. Jones), p.448, ASM Int., US (2009).

  20. C. Zener and C.S. Smith, Trans. Am. Inst. Min. Eng. 175, 15 (1948).

    Google Scholar 

  21. H. Okamoto, J. Phase Equilibria. 17, 89 (1998).

    Article  Google Scholar 

  22. Z. Guoming, L. Chao, K. Yonglin, and G. Lufeng, Adv. Mat. Res. 228–229, 1156 (2011).

    Google Scholar 

  23. A. Youle, B. Ralph, S. Freeman, and R. W. K. Honeycombe, Metallography 7, 333 (1974).

    Article  CAS  Google Scholar 

  24. K. Tsuzaki and F. G. Wei, Mater. Sci. Forum 475–479, 233 (2005).

    Article  Google Scholar 

  25. F. G. Wei, T. Hara, T. Tsuchida, and K. Tsuzaki, ISIJ Int. 43, 539 (2003).

    Article  CAS  Google Scholar 

  26. S. M. Lee and J. Y. Lee, Metall. Trans. A 17, 181 (1986).

    Article  Google Scholar 

  27. J. Y. Lee and S. M. Lee, Surf. Coat. Technol. 28, 301 (1986).

    Article  CAS  Google Scholar 

  28. J. L. Lee and J. Y. Lee, Metal. Sci. 17, 426 (1983).

    Article  CAS  Google Scholar 

  29. H. E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Verbeken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez Escobar, D., Wallaert, E., Duprez, L. et al. Thermal desorption spectroscopy study of the interaction of hydrogen with TiC precipitates. Met. Mater. Int. 19, 741–748 (2013). https://doi.org/10.1007/s12540-013-4013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-4013-7

Key words

Navigation