Skip to main content
Log in

Numerical modeling of stray current corrosion of ductile iron pipe induced by foreign cathodic protection system

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Stray current corrosion phenomena of ductile iron pipe (DIP) located in the vicinity of cathodically protected steel pipe was assessed using the boundary element method. When all joints in DIP were electrically connected, the maximum corrosion rate was 0.005 mm/y. However, when the joints were isolated, the corrosion rate increased due to the jumping effect of stray current at isolated joints, which resulted in the increase of maximum corrosion rate to 0.87 mm/y at the isolated point. Moreover, the electrical bonding between the DIP and steel pipe could not act effectively but showed an adverse effect of collecting more cathodic protection (CP) currents into the DIP, which eventually jumped out into the soil and resulted in larger amount of stray current corrosion. Therefore it is desirable to apply control methods from the design and construction stage, which include the increase of anodebed and the pipe distance, electrical connection of DIP joints, installation of sacrificial anode at isolated joints, or the application of CP on DIP, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Y. Li, Y. G. Kim, Y. T. Kho, and T. Kang, Corrosion 60, 1058 (2004).

    Article  CAS  Google Scholar 

  2. National Materials, Division of Engineering and Physical Sciences, National Research Council of the National Academies, Advisory Board, Review of the Bureau of Reclamation’s Corrosion Prevention Standards for Ductile Iron pipe, pp.22–25, The National Academies Press, Washington DC (2009).

    Google Scholar 

  3. F. E. Stetler, Mater. Performance 19, 15 (1980).

    Google Scholar 

  4. R. A. Gummow, Mater. Performance 23, 39 (1993).

    Google Scholar 

  5. M. J. Szeliga and D. M. Simpson, Mater. Performance 40, 22 (2001).

    CAS  Google Scholar 

  6. R. A. Gummow, Mater. Performance 39, 26 (2000).

    Google Scholar 

  7. M. J. Szeliga and D. M. Simpson, Mater. Performance 42, 23 (2003).

    Google Scholar 

  8. L. Vevera, Corrosion Tests and Standards — Application and Interpretation, 2nd ed., p.392, ASTM International, West Conshohocken, PA (2005).

    Google Scholar 

  9. W. von Baeckmann and W. Prinz, Handbook of Cathodic Corrosion Protection, 3rd ed., p.347, Gulf Professional Publishing, Houston, TX (1997).

    Book  Google Scholar 

  10. R. W. Revie and H. H. Uhlig, Corrosion and Corrosion Control, 4th ed., pp.241–247, John Wiley & Sons, Inc., Publication, Hoboken, NJ (2008).

    Book  Google Scholar 

  11. Manual M41, Ductile Iron Pipe and Fittings, p.173, American Water Works Association (AWWA), Denver, CO (1996).

  12. R. W. Bonds, Stray Current Effects on Ductile Iron Pipe, Ductile Iron Pipe Research Association (DIPRA), Birmingham, AL (1997).

    Google Scholar 

  13. B. Rajani and Y. Kleiner, Protection of Ductile Iron Water Mains against External Corrosion: Review of Methods and Case Histories, NRCC-45225, p.22, National Research Council of Canada, Ontario, Canada (2003).

    Google Scholar 

  14. J. S. Newman, Electrochemical System, 2nd ed., pp.241–264, Prentice-Hall, Englewood Cliff, NJ (1991).

    Google Scholar 

  15. C. A. Brebbia and J. Dominguez, Boundary Elements: An Introductory Course, pp.45–132, McGraw-Hill Book Co., Avon, IN (1989).

    Google Scholar 

  16. F. Brichau and J. Deconinck, Corrosion 50, 39 (1994).

    Article  Google Scholar 

  17. V. G. DeGeorgi, E. D. Thomas, II, K. E. Lucas, and A. Kee, Boundary Element Technology XI, pp.335–344, Computational Mechanics Publications, Southampton, U.K. (1996).

    Google Scholar 

  18. F. Brischau, J. Deconick, and T. Driesens, Corrosion 52, 480 (1996).

    Article  Google Scholar 

  19. M. E. Orazem, J. M. Esteban, K. J. Kennelly, and R. M. Degerstedt, Corrosion 53, 427 (1997).

    Article  CAS  Google Scholar 

  20. D. P. Riemer and M. E. Orazem, Corrosion 56, 794 (2000).

    Article  CAS  Google Scholar 

  21. L. Bortels, Corrosion/2002, p.02113, NACE International, Houston, TX (2002).

    Google Scholar 

  22. J. X. Jia, G. Song, A. Atrens, D. St. John, J. Baynham, and G. Chandler, Journal of Materials and Corrosion 55, 84 (2004).

    Google Scholar 

  23. M. Ridha, K. Amaya, and S. Aoki, Corrosion 61, 784 (2005).

    Article  CAS  Google Scholar 

  24. I. A. Metwally, H. M. Al-Mandhari, Z. Nadir, and A. Gastli, Euro. Trans. Electr. Power 17, 486 (2007).

    Article  Google Scholar 

  25. M. Purcar and L. Bortels, Fascicula de Energetic 15, 289 (2009).

    Google Scholar 

  26. L. Bortels, Corrosion/2003, p.03202, NACE International, Houston, TX (2003).

    Google Scholar 

  27. L. Bortels, J. Parlognue, P. J. Stehouwer, and K. Dijkstra, Corrosion/2010, p.10112, NACE International, Houston, TX (2010).

    Google Scholar 

  28. L. Bortels and J. Deconinck, Modelling of Cathodic Protection Systems, WIT Press, UK (2006).

    Google Scholar 

  29. S. Y. Li, S. W. Jung, K. W. Park, S.-M. Lee, and Y. G. Kim, Mater. Chem. Phys. 103, 9 (2007).

    Article  CAS  Google Scholar 

  30. M. J. Szeliga, Peabody’s Control of Pipeline Corrosion, 2nd ed., p.224, NACE International, Houston, TX (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SeonYeob Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Kim, YG. Numerical modeling of stray current corrosion of ductile iron pipe induced by foreign cathodic protection system. Met. Mater. Int. 19, 717–729 (2013). https://doi.org/10.1007/s12540-013-4011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-4011-9

Key words

Navigation