Skip to main content
Log in

Influences of cyclic loading on martensite transformation of TRIP steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

While austenite transformation into martensite induces increasing of the crack initiation life and restraining of the growth of fatigue cracks in cyclic-loading processes, TRIP-assisted steels have a better fatigue life than the AHSS (Advance High Strength Steels). As two key parameters in the cyclic loading process, strain amplitude and cyclic frequency are used in a kinetic transformation model to reasonably evaluate the phase transformation from austenite into martensite with the shear-band intersections theory, in which strain amplitude and cyclic frequency are related to the rate of shear-band intersection formation and the driving force of phase transformation. The results revealed that the martensite volume fraction increased and the rate of phase transformation decrease while the number of cycles increased, and the martensite volume fraction was almost constant after the number of cycles was more than 2000 times. Higher strain amplitude promotes martensite transformation and higher cyclic frequency impedes phase transformation, which are interpreted by temperature increment, the driving force of phase transformation and the rate of shearband intersection formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Greenwood and R. H. Johnson, Proc. Roy. Soc. Lond A 283, 403 (1965).

    Article  Google Scholar 

  2. C. L. Magee, Ph.D. Thesis, Carnegie Institute of Technologie University, Pittsburgh, PA (1966).

  3. J. B. Leblond, Int. J. Plasticity 5, 573 (1989).

    Article  CAS  Google Scholar 

  4. L. Taleb and F. Sidoroff, Int. J. Plasticity 19, 1821 (2003).

    Article  CAS  Google Scholar 

  5. F. D. Fischer, M. Berveiller, K. Tanaka, and E. R. Oberaigner, Arch. Appl. Mech. 64, 54 (1994).

    Google Scholar 

  6. G. B. Olson and M. Cohen, Metall. Mater. Trans. A 6, 791 (1975).

    Article  Google Scholar 

  7. R. G. Stringfellow, D. M. Parks, and G. B. Olson, Acta Metall. Mater. 40, 1703 (1992).

    Article  CAS  Google Scholar 

  8. Y. Tomita and T. Iwamoto, Int. J. Mech. Sci. 43, 2017 (2001).

    Article  Google Scholar 

  9. Y. Tomita and T. Iwamoto, Int. J. Mech. Sci. 37, 1295 (1995).

    Article  Google Scholar 

  10. Y. Tomita and T. Iwamoto, Mater. Charact. 38, 243 (1997).

    Article  CAS  Google Scholar 

  11. T. Iwamoto and T. Tsutat, Int. J. Plasticity 18, 1583 (2002).

    Article  CAS  Google Scholar 

  12. W. J. Dan, W. G. Zhang, S. H. Li, and Z. Q. Lin, Comp. Mater. Sci. 40, 101 (2007).

    Article  CAS  Google Scholar 

  13. S. H. Li, W. J. Dan, W. G. Zhang, and Z. Q. Lin, Comp. Mater. Sci. 40, 292 (2007).

    Article  CAS  Google Scholar 

  14. Z. G. Hu, P. Zhu, and M. Jin, Mater. Design 31, 2884 (2010).

    Article  CAS  Google Scholar 

  15. G. R. Chanani and S. D. Antolovich, Metall. Trans. 5, 217 (1974).

    CAS  Google Scholar 

  16. T. B. Hilditch, I. B. Timokhina, L. T. Robertson, E. V. Pereloma, and P. D. Hodgson, Metall. Mater. Trans. A 40, 342 (2009).

    Article  Google Scholar 

  17. L. T. Robertson, T. B. Hilditch, and P. D. Hodgson, Int. J. Fatigue 30, 587 (2008).

    Article  CAS  Google Scholar 

  18. K. I. Sugimoto, M. Kobayashi, and S.I. Yasuki, Metall. Mater. Trans. A 28, 2637 (1997).

    Article  Google Scholar 

  19. K. I. Sugimoto, S. M. Song, K. Inoue, M. Kobayashi, and S. Masuda, Zairyo, J. Soc. Mater. Sci. 50, 657 (2001).

    Article  CAS  Google Scholar 

  20. T. Nebel and D. Eifler, Sadhana-Acad. Proc. Eng. Sci. 28, 187 (2003).

    CAS  Google Scholar 

  21. J. Stolarz, N. Baffie, and T. Magnin, Mater. Sci. Eng. A 319, 521 (2001).

    Article  Google Scholar 

  22. M. Topic, R. B. Tait, and C. Allen, Int. J. Fatigue 29, 656 (2007).

    Article  CAS  Google Scholar 

  23. Y. Tomita and Y. Shibutani, Int. J. Plasticity 16, 769 (2000).

    Article  CAS  Google Scholar 

  24. J. Kaleta and G. Zietek, Fatigue Fract. Eng. Mater. Struct. 21, 955 (1998).

    Article  CAS  Google Scholar 

  25. U. Krupp, H. J. Christ, P. Lezuo, H. J. Maier, and R. G. Teteruk, Mater. Sci. Eng. A 319, 527 (2001).

    Article  Google Scholar 

  26. U. Krupp, C. West, H. P. Duan, and H. J. Christ, Z. Metallkd. 93, 706 (2002).

    CAS  Google Scholar 

  27. U. Krupp, C. West, and H. J. Christ, Mater. Sci. Eng. A 481, 713 (2008).

    Article  Google Scholar 

  28. M. Smaga, F. Walther, and D. Eifler, Mater. Sci. Eng. A 483-484, 394 (2008).

    Article  Google Scholar 

  29. H. Mughrabi and H. J. Christ, ISIJ Int. 37, 1154 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Dan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dan, W.J., Hu, Z.G. & Zhang, W.G. Influences of cyclic loading on martensite transformation of TRIP steels. Met. Mater. Int. 19, 251–257 (2013). https://doi.org/10.1007/s12540-013-2020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-2020-3

Key words

Navigation