Skip to main content
Log in

Effect of Al concentration on photoluminescence properties of sol-gel derived hydrogen annealed ZnO

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of the Al/Zn atomic ratio on the photoluminescence properties of hydrogen annealed undoped and Al rich ZnO (AZO) films was studied. The Al/Zn atomic ratios in the AZO films were varied from 0 to 40%. All the AZO films exhibited three peaks in the UV, green and red regions, whereas the undoped ZnO films had two peaks in the UV and green regions. The PL intensity in the UV and red regions increased with an increase in Al concentrations. The highest PL intensity in the UV region was observed in the 20% Al/Zn atomic ratio due to improvement in crystal quality which was also confirmed by XRD measurements. The PL emission in the red region was due to complex luminescent centers like (Vzn-Alzn). A blue shift was seen in the red region with the introduction of Al. The 20% AZO films obtained the strongest signal at −420 cm−1, whereas no FTIR signal was observed at 420 cm−1 in undoped ZnO. The bond signature at −420 cm−1 might be responsible for the highest PL intensity in NBE and red regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. K. Choi, D. H. Chang, Y. S. Yoo, and S. J. Kang, J. Mater. Sci: Mater. Electron. 17, 1011 (2006).

    Article  CAS  Google Scholar 

  2. M. Joseph, H. Tabata, and T. Kawai, Appl. Phys. Lett. 74, 2534 (1999).

    Article  CAS  Google Scholar 

  3. A. Ortiz, A. Sanchez, C. Falcony, M. H. Farias, G. A. Hirata, and L. Cota-Araiza, J. Non-Cryst. Solids 103, 9 (1988).

    Article  CAS  Google Scholar 

  4. M. A. Martinez, J. Herrero, and M. T. Gutierrez, Sol. Ener. Mater. Sol. Cells 45, 75 (1997).

    Article  CAS  Google Scholar 

  5. S. Oktik, Prog. Cryst. Growth Charact. 17, 171 (1988).

    Article  CAS  Google Scholar 

  6. J. Zhao, L. Z. Hu, Z. Y. Wang, Y. Zhao, X. P. Liang, and M. T. Wang, Appl. Surf. Sci. 229, 311 (2004).

    Article  CAS  Google Scholar 

  7. P. K. Song, M. Watanabe, M. Kon, A. Mitsui, and Y. Shigesato, Thin Solid Films 411, 82 (2002).

    Article  CAS  Google Scholar 

  8. J. Hu and R. G. Gordon, Solar Cells 30, 437 (1991).

    Article  CAS  Google Scholar 

  9. M. Krunks and E. Mellikov, Thin Solid Films 270, 33 (1995).

    Article  CAS  Google Scholar 

  10. T. Schuler, M. A. Aegerter, Thin Solid Films 351, 125 (1999).

    Article  CAS  Google Scholar 

  11. R. E. Marotti, D. N. Guerra, C. Bello, G. Machado, and E. A. Dalchiele, Sol. Ener. Mater. Sol. Cells 82, 85 (2004).

    Article  CAS  Google Scholar 

  12. O. Kluth, G. Schöpe, J. Hüpkes, C. Agashe, J. Müller, and B. Rech, Thin Solid Films 442, 80 (2003).

    Article  CAS  Google Scholar 

  13. S. T. Shishiyanu, T. S. Shishiyanu, and O. I. Lupan, Sensors Actuators B 107, 379 (2005).

    Article  Google Scholar 

  14. E. Suvaci and Ö. Özer, J. Eur. Ceram. Soc. 25, 1663 (2005).

    Article  CAS  Google Scholar 

  15. T. Meron and G. Markovich, J. Phys. Chem. B 109, 20232 (2005).

    Article  CAS  Google Scholar 

  16. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).

    Article  CAS  Google Scholar 

  17. N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, Mater. Sci. Semicond. Process. 2, 247 (1999).

    Article  CAS  Google Scholar 

  18. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, Adv. Mater. 14, 418 (2002).

    Article  CAS  Google Scholar 

  19. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  CAS  Google Scholar 

  20. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).

    Article  CAS  Google Scholar 

  21. M. Hiramatsu, K. Imaeda, N. Horio, and M. Nawata, J. Vac. Sci. Technol. A 16, 669 (1998).

    Article  CAS  Google Scholar 

  22. Z. Q. Xu, H. Deng, Y. Li, and H. Cheng, Mater. Sci. Semicond. Process. 9, 132 (2006).

    Article  CAS  Google Scholar 

  23. S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang, and W. F. Hsieh, J. Cryst. Growth 287, 78 (2006).

    Article  CAS  Google Scholar 

  24. A. Verma, F. Khan, D. Kumar, M. Kar, B. C. Chakravarty, S. N. Singh, and M. Husain, Thin Solid Films 518, 2649 (2010).

    Article  CAS  Google Scholar 

  25. F. Khan, Vandana, P. K. Singh, S. N. Singh, and M. Husain, Sol. Ener. Mat. & Sol. Cells 100, 57 (2012).

    Article  CAS  Google Scholar 

  26. S. J. Chen, Y. C. Liu, Y. M. Lu, J. Y. Jhang, D. Z. Shen, and Z. W. Fan, J. Cryst. Growth 289, 55 (2006).

    Article  CAS  Google Scholar 

  27. F. Khan, S. Ameen, M. Song, and H. S. Shin, J. Luminescence 134, 160 (2013).

    Article  CAS  Google Scholar 

  28. T. V. Trung, S. K. Kim, M. J. Kim, S. K. Ki, S. J. Bong, and D. R. Lee, K. J. Met. Mater. 50, 575 (2012).

    Google Scholar 

  29. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).

    Article  CAS  Google Scholar 

  30. J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang, and D. Liu, J. Cryst. Growth 263, 269 (2004).

    Article  CAS  Google Scholar 

  31. A. El Manounia, F. J. Manjón, M. Mollar, B. Marí, R. Gómez, M. C. López, J. R. Ramos-Barrado, Superlattices and Microstructures 39, 185 (2006).

    Article  Google Scholar 

  32. K. Bahedi, M. Addou, M. El Jouad, Z. Sofiani, S. Bayoud, M. EL Haouti, and J. Ebothé, ICTON Mediterranean Winter Conference 1 (2009).

    Google Scholar 

  33. J. H. Noh, I. Cho, S. Lee, C. M. Cho, H. S. Han, J. An, C. H. Kwak, J. Y. Kim, H. S. Jung, J. K. Lee, and K. S. Hong, Phys. Status Solidi A 206, 2133 (2009).

    Article  CAS  Google Scholar 

  34. K. Abe, T. Komiyama, Y. Chonan, H. Yamaguchi, and T. Aoyama, Phys. Status Solidi C 7, 288 (2010).

    Google Scholar 

  35. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).

    Article  CAS  Google Scholar 

  36. R. Dingle, Phys. Rev. Lett. 23, 579 (1918).

    Article  Google Scholar 

  37. S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 4 (1998).

    Google Scholar 

  38. T. Minami, H. Nanto, and S. Takata, J. Lumin. 63, 2425 (1981).

    Google Scholar 

  39. H. P. He, H. P. Tang, Z. Z. Ye, L. P. Zhu, B. H. Zhao, L. Wang, and X. H. Li, Appl. Phys. Lett. 90, 023104 (2007).

    Article  Google Scholar 

  40. G. Xiong, U. Pal, J. G. Serrano, K. B. Ucer, and R. T. Williams, Phys. Stat. Sol. (c) 3, 3577 (2006).

    Article  CAS  Google Scholar 

  41. A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, Appl. Phys. Lett. 80, 1909 (2002).

    Article  CAS  Google Scholar 

  42. D. Geetha and T. Thilagavathi, Digest J. Nanomaterials and Biostructures 5, 297 (2010).

    Google Scholar 

  43. A. Djelloula, M.-S. Aidab, J. Bougdira, J. Luminescence 130, 2113 (2010).

    Article  Google Scholar 

  44. Joint Committee on Powder Diffraction Standards International, Centre for Diffraction Data-ICDD.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Shik Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, F., Ameen, S., Song, M. et al. Effect of Al concentration on photoluminescence properties of sol-gel derived hydrogen annealed ZnO. Met. Mater. Int. 19, 245–250 (2013). https://doi.org/10.1007/s12540-013-2019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-2019-9

Key words

Navigation