Skip to main content
Log in

Phase transformations and hydrogen-storage characteristics of Mg-transition metal-oxide alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Samples with the compositions of 76.5 wt%Mg-23.5 wt%Ni (Mg-Ni), 71.5 wt%Mg-23.5 wt%Ni-5 wt% Fe2O3 (Mg-Ni-Fe2O3) and 71.5 wt%Mg-23.5 wt%Ni-5 wt% Fe2O3 (spray conversion) (Mg-Ni-scFe2O3), 71.5 wt%Mg-23.5 wt%Ni-5 wt% Fe (Mg-Ni-Fe) and 80 wt%Mg-13.33 wt%Ni-6.67 wt%Fe (Mg-13Ni-7Fe) were prepared by reactive mechanical grinding. Mg-13Ni-7Fe has the highest hydriding and dehydriding rates. After hydriding-dehydriding cycling, all the samples contain the Mg2Ni phase. The samples with Fe2O3 and Fe2O3(spray conversion) as starting materials contain the Mg(OH)2 phase after hydriding-dehydriding cycling as well as after reactive mechanical grinding. Mg-Ni-Fe and Mg-13Ni-7Fe contain the MgH2 phase after reactive mechanical grinding. Phases, space groups, cell parameters, contents and crystallite sizes were analyzed by Full Pattern Matching Refinement program, one of the Rietveld analysis programs, from the XRD powder patterns of Mg-Ni-scFe2O3 after reactive mechanical grinding and after hydriding-dehydriding cycling. The MgH2 phase formed in the Mg-Ni-Fe and Mg-13Ni-7Fe mixtures after reactive mechanical grinding is considered to help the pulverization of the materials during reactive mechanical grinding, leading to the high hydriding and dehydriding rates of these mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Hong, S.N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011).

    CAS  Google Scholar 

  2. M. Y. Song, Y. J. Kwak, B. S. Lee, H. R. Park, and B. G. Kim, Korean J. Met. Mater. 49, 989 (2011).

    Article  CAS  Google Scholar 

  3. J. Huot, M. L. Tremblay, R. Schulz, J. Alloys Compd. 356–357, 603 (2003).

    Article  Google Scholar 

  4. H. Imamura, M. Kusuhara, S. Minami, M. Matsumoto, K. Masanari, Y. Sakata, K. Itoh, T Fukunaga, Acta Mater. 51, 6407 (2003).

    Article  CAS  Google Scholar 

  5. A. R. Yavari, A. LeMoulec, F. R. de Castro, S. Deledda, O. Friedrichs, W. J. Botta, G. Vaughan, T. Klassen, A. Fernandez, A. Kvick, Scr. Mater. 52, 719 (2005).

    Article  CAS  Google Scholar 

  6. H. C. Zhong, H. Wang, L. Z. Ouyang, and M. Zhu, J. Alloys Compd. 509, 4268 (2011).

    Article  CAS  Google Scholar 

  7. P. Pei, X. Song, J. Liu, A. Song, P. Zhang, and G. Chen, Int. J. Hydrogen Energy 37, 984 (2012).

    Article  CAS  Google Scholar 

  8. Z. Li, X. Liu, Z. Huang, L. Jiang, S. Wang, Rare Metals 25, 247 (2006).

    Article  CAS  Google Scholar 

  9. M. Lucaci, Al. R. Biris, R. L. Orban, G. B. Sbarcea, V. Tsakiris, J. Alloys Compd. 488, 163 (2009).

    Article  CAS  Google Scholar 

  10. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem. 7, 2254 (1968).

    Article  CAS  Google Scholar 

  11. F. G. Eisenberg, D. A. Zagnoli and J. J. Sheridan Ø, J. Less-Common Met. 74, 323 (1980).

    Article  CAS  Google Scholar 

  12. J.-L. Bobet, E. Akiba, Y. Nakamura and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000).

    Article  CAS  Google Scholar 

  13. S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu, A. K. Dahle, Int. J. Hydrogen Energy 36, 571 (2011).

    Article  CAS  Google Scholar 

  14. Y. H. Cho, S. Aminorroaya, H. K. Liu, A. K. Dahle, Int. J. Hydrogen Energy 36, 4984 (2011).

    Article  CAS  Google Scholar 

  15. C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, A. Marini, Intermetallics 18, 203 (2010).

    Article  CAS  Google Scholar 

  16. Z. Li, X. Liu, L. Jiang, S. Wang, Int. J. Hydrogen Energy 32, 1869 (2007).

    Article  CAS  Google Scholar 

  17. W. Oelerich, T. Klassen, and R. Bormann, J. Alloys Compd. 322, L5 (2001).

    Article  CAS  Google Scholar 

  18. Z. Dehouche, T. Klassen, W. Oelerich, J. Goyette, T. K. Bose, and R. Schulz, J. Alloys Compd. 347, 319 (2002).

    Article  CAS  Google Scholar 

  19. G. Barkhordarian, T. Klassen, R. Bormann, Scr. Mater. 49, 213 (2003).

    Article  CAS  Google Scholar 

  20. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987).

    Article  CAS  Google Scholar 

  21. M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995).

    Article  CAS  Google Scholar 

  22. C. D. Yim, B. S. You, Y. S. Na, and J. S. Bae, Catal. Today 120, 276 (2007).

    Article  CAS  Google Scholar 

  23. M. Y. Song, I. H. Kwon, S. N. Kwon, C. G. Park, S. H. Hong, D. R. Mumm and J. S. Bae, J. Alloys Compd. 415, 266 (2006).

    Article  CAS  Google Scholar 

  24. M. Y. Song, S. H. Baek, J.-L. Bobet, J. Song, and S. H. Hong, Int. J. Hydrogen Energy 35, 10366 (2010).

    Article  CAS  Google Scholar 

  25. M. Y. Song, J. Mater. Sci. 30, 1343 (1995).

    Article  CAS  Google Scholar 

  26. M. Y. Song, Int. J. Hydrogen Energy 28, 403 (2003).

    Article  CAS  Google Scholar 

  27. M. Y. Song, J. P. Manaud, and B. Darriet, J. Alloys Compd. 282, 243 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Youp Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M.Y., Baek, S.H., Bobet, JL. et al. Phase transformations and hydrogen-storage characteristics of Mg-transition metal-oxide alloys. Met. Mater. Int. 19, 237–244 (2013). https://doi.org/10.1007/s12540-013-2017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-2017-y

Key words

Navigation