Skip to main content
Log in

Microstructure and properties of heavily drawn Cu-Ag-Fe composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Heavily drawn Cu-6 wt% Ag-2 wt% Fe, Cu-6 wt% Ag-4 wt% Fe and Cu-6 wt% Ag-6 wt% Fe were prepared by melting, homogenizing and cold drawing processes. The homogenizing treatment promotes the precipitation of secondary particles in the matrix, which results in finer and more uniform composite filaments in the drawn microstructure. With the increase of Fe content, the tensile strength increases but the electrical conductivity decreases. The strengthening of the composites and the decrease of the conductivity could be divided into two stages, which is explained by the non-homogeneous deformation model. At η = 5.6, dynamic recovery is thought to occur due to the temperature rise associated with severe deformation, leading to the sudden increase of the conductivity. A dislocation mechanism or an interface obstacle mechanism could be considered to be responsible for the strengthening and conducting behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. W. Wu, Y. Chen, and L. Meng, J. Alloys Compd. 481, 236 (2009).

    Article  CAS  Google Scholar 

  2. Z. W. WU, J. J. Liu, Y. Chen, and L. Meng, J. Alloys Compd. 467, 213 (2009).

    Article  CAS  Google Scholar 

  3. Z. W. Wu, Y. Chen, and L. Meng, J. Alloys Compd. 477, 198 (2009).

    Article  CAS  Google Scholar 

  4. S. I. Hong and M. A. Hill, Mater. Sci. Eng. A 264, 151 (1999).

    Article  Google Scholar 

  5. M. S. Lim, J. S. Song, and S. I. Hong, J. Mater. Sci. 35, 4557 (2000).

    Article  CAS  Google Scholar 

  6. A. Benghalem and D. G. Morris, Acta Mater. 45, 397 (1997).

    Article  CAS  Google Scholar 

  7. S. I. Hong and M. A. Hill, Acta Mater. 46, 4111 (1998).

    Article  CAS  Google Scholar 

  8. W. A. Spitzig, Acta Metall. Mater. 39, 1085 (1991).

    Article  CAS  Google Scholar 

  9. C. L. Trybus and W. A. Spitzig, Acta Metall. 37, 1971 (1989).

    Article  CAS  Google Scholar 

  10. S. J. Sun, Metall. Mater. Trans. A 32, 1225 (2001).

    Article  Google Scholar 

  11. J. B. Liu, L. Meng and Y. W. Zeng, Mater. Sci. Eng. A 435–436, 237 (2006).

    Google Scholar 

  12. L. Zhang, L. Meng and J. B. Liu, Scr. Mater. 52, 587 (2005).

    Article  CAS  Google Scholar 

  13. L. Zhang and L. Meng, Scr. Mater. 52, 1187 (2005).

    Article  CAS  Google Scholar 

  14. Y. Sakai, K. Inoue, and H. Maeda, Acta Metall. Mater. 43, 1517 (1995).

    Article  CAS  Google Scholar 

  15. W. A. Spitzig, A. R. Pelton, and F. C. Laabs, Acta Metall. 35, 2427 (1987).

    Article  CAS  Google Scholar 

  16. P. D. Funkenbusch and T. H. Courtney, Acta Metall. 33, 913 (1985).

    Article  CAS  Google Scholar 

  17. D. Mattissen, D. Raabe, and F. Heringhaus, Acta Mater. 47, 1627 (1999).

    Article  CAS  Google Scholar 

  18. A. Gaganov, J. Freudenberger, E. Botcharova, and L. Schultz, Mater. Sci. Eng. A 437, 313 (2006).

    Article  Google Scholar 

  19. J. S. Song, S. I. Hong, and Y. G. Park, J. Alloys Compd. 388, 69 (2005).

    Article  CAS  Google Scholar 

  20. J. S. Song, S. I. Hong, and H. S. Kim, J. Mater. Process. Technol. 113, 610 (2001).

    Article  CAS  Google Scholar 

  21. J. S. Song and S. I. Hong, J. Alloys Compd. 311, 265 (2000).

    Article  CAS  Google Scholar 

  22. H. Y. Gao, J. Wang, D. Shu, and B. D. Sun, Scr. Mater. 54, 1931 (2006).

    Article  CAS  Google Scholar 

  23. H. Y. Gao, J. Wang, D. Shu, and B. D. Sun, J. Alloys Compd. 438, 268 (2007).

    Article  CAS  Google Scholar 

  24. B. D. Sun, H. Y. Gao, J. Wang, and D. Shu, Mater. Lett. 61, 1002 (2007).

    Article  CAS  Google Scholar 

  25. D. Raabe, S. Ohsaki, and K. Hono, Acta Mater. 57, 5254 (2009).

    Article  CAS  Google Scholar 

  26. D. Raabe and D. Mattissen, Acta Mater. 46, 5973 (1998).

    Article  CAS  Google Scholar 

  27. H. Y. Gao, J. Wang, D. Shu, and B. D. Sun, Mater. Sci. Eng. A 452–453, 367 (2007).

    Google Scholar 

  28. J. Lin and L. Meng, J. Alloys Compd. 454, 150 (2008).

    Article  CAS  Google Scholar 

  29. J. D. Verhoeven, H. L. Downing, L. S. Chumbley, and E. D. Gibson, J. Appl. Phys. 65, 1293 (1989).

    Article  CAS  Google Scholar 

  30. C. Biselli and D. G. Morris, Acta Mater. 44, 493 (1996).

    Article  CAS  Google Scholar 

  31. J. Wang, R. G. Hoagland, J. P. Hirth, and A. Misra, Acta Mater. 56, 5685 (2008).

    Article  CAS  Google Scholar 

  32. P. D. Funkenbusch, J. K. Lee, and T. H. Courtney, Mater. Trans. A 18, 1249 (1987).

    Article  Google Scholar 

  33. C. W. Sinclair, J. D. Embury, and G. C. Weatherly, Mater. Sci. Eng. A 272, 90 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J.S., Yao, D.W. & Meng, L. Microstructure and properties of heavily drawn Cu-Ag-Fe composites. Met. Mater. Int. 19, 225–230 (2013). https://doi.org/10.1007/s12540-013-2015-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-2015-0

Key words

Navigation