Skip to main content
Log in

Transition of crack propagation from a transgranular to an intergranular path in an overaged Al-Zn-Mg-Cu alloy during cyclic loading

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The fatigue crack propagation behavior in the overaged Al-Zn-Mg-Cu alloy was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy and electron backscatter diffraction. The results revealed that a fatigue crack tended to transgranularly propagate in the near-threshold regime, whereas intergranular crack propagation was dominant at the high ΔK regime. The transition of crack propagation from a transgranular to an intergranular path that occurred in the Paris regime was strongly influenced by the misorientation of adjacent grains and precipitate free zones. In addition, a crystallographic model of crack propagation was proposed to interpret the transition. The fatigue short crack propagation on a single slip plane was responsible for the formation of a transgranular propagation path in the near-threshold regime. The fatigue long crack propagation, which was conducted by a duplex slip mechanism in the Paris regime, led to the formation of fatigue striations. The formation of a zigzag crack in the near-threshold regime was ascribed to the high misorientation of adjacent grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Charles, F. A. A. Crane, and J. A. G. Furness, Selection and Use of Engineering Materials, 3rd ed., pp. 227–255, Butterworth Heinemann, Oxford (1997).

    Book  Google Scholar 

  2. E. A. Starke Jr and J. T. Staley, Prog. Aerosp. Sci. 32, 131 (1996).

    Article  Google Scholar 

  3. S. Suresh, A. K. Vasudevan, M. Tosten, and P. R. Howell, Acta Mater. 35, 25 (1987).

    Article  CAS  Google Scholar 

  4. R. S. Vecchio, R. W. Hertzberg, and R. Jaccard, Fatigue Fract. Eng. Mater. Struct. 7, 181 (1984).

    Article  Google Scholar 

  5. T. Zhai, A. J. Wilkinson, and J. W. Martin, Acta Mater. 48, 4917 (2000).

    Article  CAS  Google Scholar 

  6. T. Zhai, X. P. Jiang, J. X. Li, M. D. Garratt, and G. H. Bray, Int. J. Fatigue. 27, 1202 (2005).

    Article  CAS  Google Scholar 

  7. Z. Q. Zheng, B. Cai, T. Zhai, and S. C. Li, Mater. Sci. Eng. A 528, 2017 (2011).

    Article  Google Scholar 

  8. S. X. Li, R. Q. Chu, J. Y. Hou, and Z. G. Wang, Philos. Mag. A 77, 1081 (1998).

    Article  CAS  Google Scholar 

  9. H. Zhang, H. Toda, P. C. Qu, Y. Sakaguchi, M. Kobayashi, K. Uesugi, and Y. Suzuki, Acta Mater. 57, 3287 (2009).

    Article  CAS  Google Scholar 

  10. H. G. Jian, F. Jiang, L. L. Wei, X. Y. Zheng, and K. Wen, Mater. Sci. Eng. A. 527, 5879 (2010).

    Article  Google Scholar 

  11. K. S. Chan, Int. J. Fracture. 32, 1428 (2010).

    CAS  Google Scholar 

  12. G. Hénaff, F. Menan, and G. Odemer, Eng. Fract. Mech. 77, 1975 (2010).

    Article  Google Scholar 

  13. P. J. E. Forsyth, In: Proceedings of Crack Propagation Symposium, pp.76–94, The College of Aeronautics, Cranfield (1962).

    Google Scholar 

  14. B. Künkler, O. Düber, P. Köster, U. Krupp, C.-P. Fritzen, and H.-J. Christ, Eng. Fract. Mech. 75, 715 (2008).

    Article  Google Scholar 

  15. S. Suresh, Fatigue of Materials, 2nd ed., pp.341–342, Cambridge University Press, Cambridge (1998).

    Book  Google Scholar 

  16. C. Q. Bowles and D. Broek, Int. J. Fracture. Mech. 8, 75 (1972).

    Article  Google Scholar 

  17. B. Tomkins, Fatigue Fract. Eng. Mater. Struct. 19, 1295 (1996).

    Article  CAS  Google Scholar 

  18. C. Laird, ASTM STP. 415, 131 (1966).

    Google Scholar 

  19. M. N. Desmukh, R. K. Pandey, and A. K. Mukhopadnyay, Mater. Sci. Eng. A 435–436, 318 (2006).

    Google Scholar 

  20. B. Sarkar, M. Marek and E. A. Starke Jr, Metall. Trans. A 12, 1939 (1981).

    Article  CAS  Google Scholar 

  21. A. D. B. Gingell and J. E. King, Acta Mater. 45, 3855 (1997).

    Article  CAS  Google Scholar 

  22. Y. Xue, H. El Kadiri, M. F. Horstemeyer, J. B. Jordon, and H. Weiland, Acta Mater. 55, 1975 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Liu, Z., Xia, P. et al. Transition of crack propagation from a transgranular to an intergranular path in an overaged Al-Zn-Mg-Cu alloy during cyclic loading. Met. Mater. Int. 19, 197–203 (2013). https://doi.org/10.1007/s12540-013-2009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-2009-y

Key words

Navigation