Skip to main content
Log in

Structural evolution and interdiffusion in Al/Cu nanocomposites produced by a novel manufacturing process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Aluminum-copper multilayered composites were synthesized at ambient temperature from a layered array of individual elemental aluminum and copper foils by up to 10 cycles of accumulative roll bonding and folding (ARBF). Well-bonded sheet materials were successfully obtained with an initial cycle reduction of 50%. The microstructural development during the ARBF process was investigated by optical microscopy and scanning electron microscopy. After 10 cycles of ARBF, the crystallite sizes of Al and Cu, calculated by the Rietveld method, were 70 nm and 50 nm, respectively. WDS analysis revealed that by increasing the number of ARBF cycles, diffusion of Cu atoms was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev, N. A. Krasilinikov, and N. K. Tsenev, Mater. Sci. Eng. A 137, 35 (1991).

    Article  Google Scholar 

  2. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, Mater. Sci. Eng. A 168, 141 (1993).

    Article  Google Scholar 

  3. Z. Horita, M. Furukawa, N. Nemoto, A. J. Barnes, and T. G. Longdon, J. Acta. Mater. 48, 3633 (2000).

    Article  CAS  Google Scholar 

  4. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, J. Acta. Mater. 47, 579 (1999).

    Article  CAS  Google Scholar 

  5. R. Z. Valiev and T. G. Longdon, J. Prog. in Mater. Sci. 51, 881 (2006).

    Article  CAS  Google Scholar 

  6. A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baro, and J. A. Szpunar, J. Acta. Mater. 51, 753 (2003).

    Article  CAS  Google Scholar 

  7. G. P. Dinda, H. Rösner, and G. Wild, J. Mater. Sci. Eng. A 410–411, 328 (2005).

    Article  Google Scholar 

  8. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, J. Scr. Mater. 39, 1221 (1998).

    Article  CAS  Google Scholar 

  9. G. Wilde, H. Sieber, and J. H. Perepezko, J. Scr. Mater. 40, 779 (1999).

    Article  CAS  Google Scholar 

  10. G. P. Dinda, H. Rosner, and G. Wilde, J. Scr. Mater. 52, 577 (2005).

    Article  CAS  Google Scholar 

  11. M. Eizadjou, A. K. Talachi, H. D. Manesh, H. S. Shakur, and K. Janghorban, J. Composites. Sci. Tech. 68, 2003 (2008).

    Article  CAS  Google Scholar 

  12. M. C. Chen, H. C. Hsieh, and W. Wu, J. Alloys. Comp. 416, 169 (2006).

    Article  CAS  Google Scholar 

  13. A. Mozaffari, H. D. Manesh, and K. Janghorban, J. Alloys. Comp. 489, 103 (2010).

    Article  CAS  Google Scholar 

  14. F. Kavarana, K. Ravichandran, and S. Sahay, Scr. Mater. 42, 947 (2000).

    Article  CAS  Google Scholar 

  15. H. Sieber, G. Wilde, and J. Perepezko, J. Non-Cryst. Solids 250–252, 611 (1999).

    Article  Google Scholar 

  16. S. Kikuchi, H. Kuwahara, N. Mazaki, S. Urai, and H. Miyamura, Mater. Sci. Eng A 234–236, 1114 (1997).

    Google Scholar 

  17. K. Yasuna, M. Terauchi, A. Otsuki, K. N. Ishihara, and P. H. Shingu, Mater. Sci. Eng. A 285, 412 (2000).

    Article  Google Scholar 

  18. G. Min, J. M. Lee, and S. B. Kang, Mater. Lett. 60, 3255 (2006).

    Article  CAS  Google Scholar 

  19. A. Chanda and M. De, Alloys. Comp. 313, 104 (2000).

    Article  CAS  Google Scholar 

  20. H. Pal, A. Chanda, and M. De, Alloys. Comp. 278, 209 (1998).

    Article  CAS  Google Scholar 

  21. M. Eizadjou, A. K. Talachi, H. Daneshmanesh, H. S. Shahabi, and K. Janghorban, Comp. Sci. Tech. 68, 2003 (2008).

    Article  CAS  Google Scholar 

  22. N. Tsuji, Y. Saito, S. H. Lee, and Y. Minamino, Adv. Eng. Mater. 5, 338 (2003).

    Article  CAS  Google Scholar 

  23. Y. H. Jang, S. S. Kim, S. Z. Han, C. Y. Lim, and C. J. Kim, Scr. Mater. 52, 21 (2005).

    Article  CAS  Google Scholar 

  24. S. Z. Han, C. Lim, C. J. Kim, and S. Kim, Mater. Sci. Forum 475, 3497 (2005).

    Article  Google Scholar 

  25. M. Shaarbaf and M. R. Toroghinejad, Mater. Sci. Eng. A 473, 28 (2008).

    Article  Google Scholar 

  26. H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens, Mater. Sci. Eng. A 497, 132 (2008).

    Article  Google Scholar 

  27. C. Kwan, Z. Wang, and S. B. Kang, Mater. Sci. Eng. A 480, 148 (2008).

    Article  Google Scholar 

  28. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, Scr. Mater. 39, 1221 (1998).

    Article  CAS  Google Scholar 

  29. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Khademzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khademzadeh, S., Toroghinejad, M.R. & Ashrafizadeh, F. Structural evolution and interdiffusion in Al/Cu nanocomposites produced by a novel manufacturing process. Met. Mater. Int. 18, 1049–1054 (2012). https://doi.org/10.1007/s12540-012-6019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-6019-y

Key words

Navigation