Metals and Materials International

, Volume 18, Issue 6, pp 1049–1054 | Cite as

Structural evolution and interdiffusion in Al/Cu nanocomposites produced by a novel manufacturing process

  • Saeed Khademzadeh
  • Mohammad Reza Toroghinejad
  • Fakhredin Ashrafizadeh
Article

Abstract

Aluminum-copper multilayered composites were synthesized at ambient temperature from a layered array of individual elemental aluminum and copper foils by up to 10 cycles of accumulative roll bonding and folding (ARBF). Well-bonded sheet materials were successfully obtained with an initial cycle reduction of 50%. The microstructural development during the ARBF process was investigated by optical microscopy and scanning electron microscopy. After 10 cycles of ARBF, the crystallite sizes of Al and Cu, calculated by the Rietveld method, were 70 nm and 50 nm, respectively. WDS analysis revealed that by increasing the number of ARBF cycles, diffusion of Cu atoms was increased.

Key words

metal matrix composites diffusion bonding scanning electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Z. Valiev, N. A. Krasilinikov, and N. K. Tsenev, Mater. Sci. Eng. A 137, 35 (1991).CrossRefGoogle Scholar
  2. 2.
    R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, Mater. Sci. Eng. A 168, 141 (1993).CrossRefGoogle Scholar
  3. 3.
    Z. Horita, M. Furukawa, N. Nemoto, A. J. Barnes, and T. G. Longdon, J. Acta. Mater. 48, 3633 (2000).CrossRefGoogle Scholar
  4. 4.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, J. Acta. Mater. 47, 579 (1999).CrossRefGoogle Scholar
  5. 5.
    R. Z. Valiev and T. G. Longdon, J. Prog. in Mater. Sci. 51, 881 (2006).CrossRefGoogle Scholar
  6. 6.
    A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baro, and J. A. Szpunar, J. Acta. Mater. 51, 753 (2003).CrossRefGoogle Scholar
  7. 7.
    G. P. Dinda, H. Rösner, and G. Wild, J. Mater. Sci. Eng. A 410–411, 328 (2005).CrossRefGoogle Scholar
  8. 8.
    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, J. Scr. Mater. 39, 1221 (1998).CrossRefGoogle Scholar
  9. 9.
    G. Wilde, H. Sieber, and J. H. Perepezko, J. Scr. Mater. 40, 779 (1999).CrossRefGoogle Scholar
  10. 10.
    G. P. Dinda, H. Rosner, and G. Wilde, J. Scr. Mater. 52, 577 (2005).CrossRefGoogle Scholar
  11. 11.
    M. Eizadjou, A. K. Talachi, H. D. Manesh, H. S. Shakur, and K. Janghorban, J. Composites. Sci. Tech. 68, 2003 (2008).CrossRefGoogle Scholar
  12. 12.
    M. C. Chen, H. C. Hsieh, and W. Wu, J. Alloys. Comp. 416, 169 (2006).CrossRefGoogle Scholar
  13. 13.
    A. Mozaffari, H. D. Manesh, and K. Janghorban, J. Alloys. Comp. 489, 103 (2010).CrossRefGoogle Scholar
  14. 14.
    F. Kavarana, K. Ravichandran, and S. Sahay, Scr. Mater. 42, 947 (2000).CrossRefGoogle Scholar
  15. 15.
    H. Sieber, G. Wilde, and J. Perepezko, J. Non-Cryst. Solids 250–252, 611 (1999).CrossRefGoogle Scholar
  16. 16.
    S. Kikuchi, H. Kuwahara, N. Mazaki, S. Urai, and H. Miyamura, Mater. Sci. Eng A 234–236, 1114 (1997).Google Scholar
  17. 17.
    K. Yasuna, M. Terauchi, A. Otsuki, K. N. Ishihara, and P. H. Shingu, Mater. Sci. Eng. A 285, 412 (2000).CrossRefGoogle Scholar
  18. 18.
    G. Min, J. M. Lee, and S. B. Kang, Mater. Lett. 60, 3255 (2006).CrossRefGoogle Scholar
  19. 19.
    A. Chanda and M. De, Alloys. Comp. 313, 104 (2000).CrossRefGoogle Scholar
  20. 20.
    H. Pal, A. Chanda, and M. De, Alloys. Comp. 278, 209 (1998).CrossRefGoogle Scholar
  21. 21.
    M. Eizadjou, A. K. Talachi, H. Daneshmanesh, H. S. Shahabi, and K. Janghorban, Comp. Sci. Tech. 68, 2003 (2008).CrossRefGoogle Scholar
  22. 22.
    N. Tsuji, Y. Saito, S. H. Lee, and Y. Minamino, Adv. Eng. Mater. 5, 338 (2003).CrossRefGoogle Scholar
  23. 23.
    Y. H. Jang, S. S. Kim, S. Z. Han, C. Y. Lim, and C. J. Kim, Scr. Mater. 52, 21 (2005).CrossRefGoogle Scholar
  24. 24.
    S. Z. Han, C. Lim, C. J. Kim, and S. Kim, Mater. Sci. Forum 475, 3497 (2005).CrossRefGoogle Scholar
  25. 25.
    M. Shaarbaf and M. R. Toroghinejad, Mater. Sci. Eng. A 473, 28 (2008).CrossRefGoogle Scholar
  26. 26.
    H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens, Mater. Sci. Eng. A 497, 132 (2008).CrossRefGoogle Scholar
  27. 27.
    C. Kwan, Z. Wang, and S. B. Kang, Mater. Sci. Eng. A 480, 148 (2008).CrossRefGoogle Scholar
  28. 28.
    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, Scr. Mater. 39, 1221 (1998).CrossRefGoogle Scholar
  29. 29.
    F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier (2004).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Saeed Khademzadeh
    • 1
  • Mohammad Reza Toroghinejad
    • 2
  • Fakhredin Ashrafizadeh
    • 2
  1. 1.Mining and Metallurgical Engineering DepartmentAmirkabir University of TechnologyTehranIran
  2. 2.Departmentof Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations