Effects of electrolyte ph on the electrochemical behavior of Fe-based bulk metallic glass

Abstract

The effects of electrolyte pH on the electrochemical behavior of Fe-based bulk metallic glass with a composition of Fe68.8C7.0Si3.5B5P9.6Cr2.1Mo2.0Al2.0 were investigated at an ambient temperature. The results indicate that corrosion behavior is strongly dependent on the pH values. The corrosion current densities and capacitance values decrease with an increase in pH values in acidic electrolytes, while the opposite tendencies are obtained in alkaline electrolytes. While the corrosion product of the outer layer in low pH conditions is an amorphous structure, crystalline ferric oxide is obtained in the electrolyte with pH=14. The electrochemical behavior is discussed on the basis of the results of electrochemical and microstructural analysis.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. L. Greer, Science 267, 1947 (1995).

    Article  CAS  Google Scholar 

  2. 2.

    K. Pekala, J. Latuch, and T. Kulik, Mater. Sci. Eng. A 375, 377 (2004).

    Google Scholar 

  3. 3.

    A. Inoue, B. L. Shen, and C. T. Chang, Intermetallics 14, 936 (2006).

    Article  CAS  Google Scholar 

  4. 4.

    A. Basu, A. N. Samant, S. P. Harimkar, Surf. Coat. Tech. 202, 2623 (2008).

    Article  CAS  Google Scholar 

  5. 5.

    I. Manna, J. D. Majumdar, B. R. Chandra, Surf. Coat. Tech. 201, 434 (2006).

    Article  CAS  Google Scholar 

  6. 6.

    Z. Zhou, L. Wang, and F. C. Wang, Surf. Coat. Tech. 204, 563 (2009).

    Article  CAS  Google Scholar 

  7. 7.

    Z. L. Long, Y. Shao, and A. Inoue, Intermetallics 15, 1453 (2007).

    Article  CAS  Google Scholar 

  8. 8.

    A. Lekatou, A. Marinou, P. Pasalas, J. Alloys Compd. 483, 514 (2009).

    Article  CAS  Google Scholar 

  9. 9.

    H. X. Li, Z. P. Lu, and S. Yi, Met. Mater. Int. 15, 7 (2009).

    Article  Google Scholar 

  10. 10.

    H. X. Li and S. Yi, Mater. Chem. Phys. 112, 305 (2008).

    Article  CAS  Google Scholar 

  11. 11.

    S. L. Wang, H. X. Li, and S. Yi, Mater. Chem. Phys. 113, 878 (2009).

    Article  CAS  Google Scholar 

  12. 12.

    S. Hiromoto, A. P. Tsai, and M. Sumita, Corros. Sci. 42, 2193 (2000).

    Article  CAS  Google Scholar 

  13. 13.

    C. P. Lee, C. C. Chang, and H. C. Shih, Corros, Sci. 50, 2053 (2008).

    Article  CAS  Google Scholar 

  14. 14.

    M. P. M. Kaninski and V. M. Nikolic, Int. J. Hydrogen Energ. 34, 703 (2009).

    Article  Google Scholar 

  15. 15.

    H. O. Curkovic, E.S. Lisac, and H. Takenouti, Corros. Sci. 52, 398 (2010).

    Article  Google Scholar 

  16. 16.

    F. Rosalbino, S. Delsante, and G. Borzone, Corros. Sci. 52, 322 (2010).

    Article  CAS  Google Scholar 

  17. 17.

    J. Liu and D. D. Madonald, J. Electrochem. Soc. 148, 425 (2001).

    Article  Google Scholar 

  18. 18.

    C. M. Abreu, M. J. Cristobal, and R. Losada, Electrochim. Acta 51, 2991 (2006).

    Article  CAS  Google Scholar 

  19. 19.

    G. E. Muilenberg and C. D. Wagner, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, USA (1979).

    Google Scholar 

  20. 20.

    M. L. Varsanyi, F. Falkenberg, and I. Olefjord, Electrochim. Acta 43, 187 (1998).

    Article  Google Scholar 

  21. 21.

    H. Alves, M. G. S. Ferrira, and U. Koster, Corrros. Sci. 45, 1833 (2003).

    Article  CAS  Google Scholar 

  22. 22.

    P. Keller and H. H. Strehblow, Corros. Sci. 46, 1939 (2004).

    Article  CAS  Google Scholar 

  23. 23.

    A. A. Hermas, Corros. Sci. 50, 2498 (2008).

    Article  CAS  Google Scholar 

  24. 24.

    A. Pardo, M. C. Merino, and E. Otero, J. Non-Cryst. Solids 352, 3179 (2006).

    Article  CAS  Google Scholar 

  25. 25.

    S. J. Pang, T. Zhang, and A. Inoue, Corros. Sci. 44, 1847 (2002).

    Article  CAS  Google Scholar 

  26. 26.

    C. T. Liu and J. K. Wu, Corros. Sci. 49, 2189 (2007).

    Google Scholar 

  27. 27.

    X. Y. Li, E. Akiyama, and K. Hashimoto, Corros. Sci. 41, 1849 (1999).

    Article  CAS  Google Scholar 

  28. 28.

    M. W. Tan, E. Akiyama, and A. Kawashima, Corros. Sci. 37, 331 (1995).

    Article  CAS  Google Scholar 

  29. 29.

    M. W. Tan, E. Akiyama, and A. Kawashima, Corros. Sci. 38, 349 (1996).

    Article  CAS  Google Scholar 

  30. 30.

    M. Nakatsu, S. Yonezawa, and M. Taashima, Corros. Sci. 49, 3185 (2007).

    Article  CAS  Google Scholar 

  31. 31.

    T. P. Moffat and W. F. Flanagan, J. Electrochem. Soc. 135, 2712 (1988).

    Article  CAS  Google Scholar 

  32. 32.

    I. Chattoraj, K. R. M. Rao, and A. Mitra, Corros. Sci. 41, 1 (1999).

    Article  CAS  Google Scholar 

  33. 33.

    S. Virtanen and H. Boehni, ISIJ International 31, 229 (1991).

    Article  CAS  Google Scholar 

  34. 34.

    G. L. Song, C. N. Cao, and S. H. Chen, Corros. Sci. 47, 323 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Yi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, S.L., Li, H.X., Jeong, Y.U. et al. Effects of electrolyte ph on the electrochemical behavior of Fe-based bulk metallic glass. Met. Mater. Int. 18, 791–797 (2012). https://doi.org/10.1007/s12540-012-5007-6

Download citation

Key words

  • amorphous materials
  • casting
  • electrochemisty
  • SEM
  • corrosion