Skip to main content
Log in

Aluminum fire-through with different types of the rear passivation layers in crystalline silicon solar cells

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Aluminum penetration during dielectric layer annealing on silicon was studied for solar cell application. The thickness and uniformity of the aluminum-doped region was examined in variously annealed dielectric layers. Three types of silicon wafers were used with (1) bare Si, (2) SiO2 layer (80 nm)/Si, and (3) SiNX layer (80 nm)/Si. Local metal contacts were made through laser-drilled holes, and annealing was tested at four different temperatures. Reactions between aluminum and silicon were observed by cross-sectional scanning electron microscopy. Reactions occurred at 660 °C on bare Si and at ca. 690 °C on the SiO2 layer. However, the SiO2 did not withstand annealing at higher temperatures. The SiNX layer showed no Al-BSF region in samples annealed at up to 760 °C, making it a suitable material for rear passivation layers in local contact Si solar cells. A Si solar cell fabricated by laser drilling and screen printing showed an efficiency of 12.41% without optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bernreuter, Photon. Int. 26, 32 (2001).

    Google Scholar 

  2. B. Sopori, Handbook of Photovoltaic Sci. and Eng. (eds. A. Luque, S. Hegedus), pp. 15–19, Wiley, New York (2003).

    Google Scholar 

  3. F. Llopis, I. Tobias, Sol. Energy Mater & Sol. Cells 87, 481 (2005).

    Article  CAS  Google Scholar 

  4. E. Schneiderlochner, Prog. Photovoltaics 10, 29 (2002).

    Article  CAS  Google Scholar 

  5. A. W. Blackers, A. Wang, A. M. Milne, J. Zhao, X. Dai, M. A. Green, Proc. 4 th International Photovoltaic Sci. and Eng. Conf., pp. 801–806, Sydney, Australia (1989).

    Google Scholar 

  6. Armin G. Aberle, Rudolf Hezel, Prog. Photovoltaics 5, 29 (1997).

    Article  CAS  Google Scholar 

  7. S. W. Glunz, R. Preu, S. Schaefer, E. Schneiderlochner, W. Pfleging, R. Ludemann, G. Willeke, Proc. 28 th IEEE Photovoltaic Specialists Conf., pp. 168–171, Anchorage, Alaska, USA (2000).

    Google Scholar 

  8. W. J. Scoppe, B. G. Duijvelaar, S. E. A. Schiermeier, A. W. Weeber, A. Steiner, F. M. Schuurmans, Proc. 16 th European Photovoltaic Solar Energy Conf., pp. 1420–1423, Glasgow, UK (2000).

    Google Scholar 

  9. F. Schitthelm, P. Volk, H. Dekkers, J. Szlufcik, Proc. 16 th European Photovoltaic Solar Energy Conf., pp. 1609–1612, Glasgow, UK (2000).

    Google Scholar 

  10. Martin A. Green, Prog. Photovoltaics 17, 85 (2009).

    Article  CAS  Google Scholar 

  11. Y. Hishikawa, Renewable Energy, pp. 13–17, Busan, Korea (2008).

    Google Scholar 

  12. Martin A. Green, Prog. Photovoltaics 17, 183 (2009).

    Article  CAS  Google Scholar 

  13. J. Zhao, A. Wang, Martin A. Green, Sol. Energy Mater. & Sol. Cells 65, 429 (2001).

    Article  CAS  Google Scholar 

  14. Ralf Preu, G. Agostinelli, Proc. 16 th European Photovoltaic Solar Energy Conf., pp. 1181–1184, Glasgow, UK (2000).

    Google Scholar 

  15. H. Y. Koo, J. H. Kim, J. H. Yi, Y. N. Ko, and Y. C. Kang, Korean J. Met. Mater. 48, 570 (2010).

    CAS  Google Scholar 

  16. S. De Wolf, G. Agostinelli, Acta Physica Solvaca 2, 135 (2003).

    Google Scholar 

  17. Larry D. Partain, Solar Cells and Their Applications, p.60, John Wiley & Sons, Inc (1995).

  18. Armin G. Aberle, Prog. Photovoltaics 5, 29 (1997).

    Article  CAS  Google Scholar 

  19. O. P. Agnihotri, Semiconductor Sci. and Technol. 15, R29 (2000).

    Article  CAS  Google Scholar 

  20. Vichai Meemongkolkiat, Jouranl of the Electrochemical Society 153, G53–G58 (2006).

    Article  CAS  Google Scholar 

  21. A. Kaminski, Sol. Energy Mater & Sol. Cells 72, 373 (2002).

    Article  CAS  Google Scholar 

  22. Shreesh Narasimha, IEEE Trans. Electron Devices 46, 7 (1999).

    Article  Google Scholar 

  23. H. J. T. Ellingham, Journal of the Society of Chemical Industry 63, 125 (1944).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J.y., Park, S., Kim, Y.D. et al. Aluminum fire-through with different types of the rear passivation layers in crystalline silicon solar cells. Met. Mater. Int. 18, 699–703 (2012). https://doi.org/10.1007/s12540-012-4020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-4020-0

Key words

Navigation