Skip to main content
Log in

Refinement of the primary Si particles in hypereutectic aluminum alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Al-Si alloys, with such excellent properties as low weight, low thermal expansion coefficient, and high wear-resistance, are ideal materials for the automobile and aerospace industries. However, their applications have been hampered by the coarsening of the primary-Si particles in Al-Si alloys. In this study, simple plastic deformation was used to reduce primary-Si particles and to improve the wear-resistance and mechanical strength of Al-Si alloys. Experimental results showed that mechanical rolling decreased the grain size of primary-Si particles in Al-Si alloys and reduced the variation in silicon particle size. After 60%-roll-reduction, the alloy showed an improved tensile strength of 340 MPa, which is attributed to the work hardening of the aluminum matrix and the dispersion strengthening of the primary-Si particles. Data from wear-resistance testing showed that rolling led to a reduction in wear loss. This improvement in wear resistance is due to the particle size refinement of silicon at a high percentage-roll-reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gupta and E. J. Lavernia, J. Mater. Process. Technol. 54, 261 (1995).

    Article  Google Scholar 

  2. A. K. Prasada Rao, K. Das, B. S. Murty, and M. Chakraborty, Wear 257, 148 (2004).

    Article  CAS  Google Scholar 

  3. D. Vuksanovic’, M. Martinovic’, P. Z’ivkovic’, Z. Cvijovic’, S. Tripkovic’, Mater. Technol. 37, 149 (2003).

    Google Scholar 

  4. W. J. Kyffin, W. M. Rainforth, and H. Jones, Mater. Trans. 42,10, 2098 (2001).

    Article  CAS  Google Scholar 

  5. S. P. Nikanorov, M. P. Volkov, V. N. Gurin, Y. A. Burenkov, L. I. Derkachenko, B. K. Kardashev, L. L. Regel, and W. R. Wilcox, Mater. Sci. Eng. A 390, 63 (2005).

    Article  Google Scholar 

  6. S. J. Hong and C. Suryanarayana, Metall. Mater. Trans. A 36, 715 (2005).

    Google Scholar 

  7. A. J. Moffat, S. Barnes, B. G. Mellor, and P. A. S. Reed, Int. J. Fatigue 27, 1564 (2005).

    Article  CAS  Google Scholar 

  8. Y. Wu, S. Wang, H. Li, and X. Liu, J. Alloys Compd. 477, 139 (2009).

    Article  CAS  Google Scholar 

  9. K. Matsuura, K. Suzuki, T. Ohmi, M. Kudoh, H. Kinoshita, and H. Takahashi, Metall. Mater. Trans. A 35, 333 (2004).

    Article  Google Scholar 

  10. F. Wang, Y. Ma, Z. Zhang, X. Cui, and Y. Jin, Wear 256, 342 (2004).

    Article  CAS  Google Scholar 

  11. S. C. Lim, M. Gupta, Y. F. Leng, and E. J. Lavernia, J. Mater. Process. Technol. 63, 865 (1997).

    Article  Google Scholar 

  12. J. E. Gruzleski, B. M. Closset, The Treatment of Liquid Aluminum-Silicon Alloys, p.13, The American Foundrymen’s Society, Inc., US (1990).

    Google Scholar 

  13. K. Toyama, K. Matsuura, M. Ohno, T. Sato, and M. Nakayama, J. Jpn. Inst. Light Met. 60, 1 (2010).

    Article  Google Scholar 

  14. S. Umezawa, Japanese patent, JP 4103959 B2 2008.6.18. (2008).

  15. T. Ohmi, M. Kudoh, K. Ohsasa, Y. Itoh, K. Matsuura, and K. Ishii, J. Jpn Inst. Light Met. 44, 2 (1994).

    Google Scholar 

  16. S. Nafisi and R. Ghomashchi, J. Mater. Process. Technol. 174, 371 (2006).

    Article  CAS  Google Scholar 

  17. K. V. Ojha, A. Tomar, D. Singh, and G. C. Kaushal, Mater. Sci. Eng. A 487, 591 (2008).

    Article  Google Scholar 

  18. S. Kumar, M. Chakraborty, V. S. Sarma, and B. S. Murty, Wear 265, 134 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Yih Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, CC., Wang, JY., Huang, JJ. et al. Refinement of the primary Si particles in hypereutectic aluminum alloy. Met. Mater. Int. 18, 567–571 (2012). https://doi.org/10.1007/s12540-012-4003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-4003-1

Key words

Navigation