Skip to main content
Log in

Cycling performance of LiNi1−yMyO2 (M=Ni, Ga, Al and/or Ti) synthesized by wet milling and solid-state method

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The LiNi1−yMyO2 specimens with compositions of LiNiO2, LiNi0.975Ga0.025O2, LiNi0.975Al0.025O2, LiNi0.995Ti0.005O2, and LiNi0.990Al0.005Ti0.005O2 were synthesized by wet milling and a solid-state reaction method. Among all the specimens, LiNi0.990Al0.005Ti0.005O2 has the largest first discharge capacity of 196.3 mAh/g at a rate of 0.1 C. At n=50, LiNiO2 has the largest discharge capacity of 126.7 mAh/g. LiNiO2 has the best cycling performance, its degradation rate of discharge capacity being 0.73 mAh/g/cycle. LiNi0.975Al0.025O2 shows the lowest decrease rate of the first discharge capacity with C rate. An equation describing the variation of the discharge capacity with the number of charge-discharge cycles, n, is obtained. The Williamson-Hall method is applied to calculate the crystallite size and the strain of the samples before and after charge-discharge cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon, and S. Colson, J. Electrochem. Soc. 138, 2859 (1991).

    Article  CAS  Google Scholar 

  2. A. R. Armstrong and P. G. Bruce, Lett. Nature 381, 499 (1996).

    Article  CAS  Google Scholar 

  3. M. Y. Song and D. S. Ahn, Solid State Ionics 112, 245 (1998).

    Article  CAS  Google Scholar 

  4. K. Ozawa, Solid State Ionics 69, 212 (1994).

    Article  CAS  Google Scholar 

  5. R. Alcántara, P. Lavela, J. L. Tirado, R. Stoyanova, and E. Zhecheva, J. Solid State Chem. 134, 265 (1997).

    Article  Google Scholar 

  6. Z. S. Peng, C. R. Wan, and C. Y. Jiang, J. Power Sources 72, 215 (1998).

    Article  CAS  Google Scholar 

  7. J. R. Dahn, U. von Sacken, and C. A. Michal, Solid State Ionics 44, 87 (1990).

    Article  CAS  Google Scholar 

  8. J. R. Dahn, U. von Sacken, M. R. Jukow, and H. Aljanaby, J. Electrochem. Soc. 138, 2207 (1991).

    Article  CAS  Google Scholar 

  9. D. H. Kim and Y. U. Jeong, Korean J. Met. Mater. 48, 262 (2010).

    Article  CAS  Google Scholar 

  10. H. U. Kim, D. R. Mumm, H. R. Park, and M. Y. Song, Electron. Mater. Lett. 6, 91 (2010).

    Article  CAS  Google Scholar 

  11. Y. Nishida, K. Nakane, and T. Stoh, J. Power Sources 68, 561 (1997).

    Article  CAS  Google Scholar 

  12. J. Morales, C. Perez-Vicente, and J. L. Tirado, Mat. Res. Bull. 25, 623 (1990).

    Article  CAS  Google Scholar 

  13. A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, and C. Delmas, Solid State Ionics 90, 83 (1996).

    Article  CAS  Google Scholar 

  14. M. Guilmard, A. Rougier, M. Grune, L. Croguennec, and C. Delmas, J. Power Sources 115, 305 (2003).

    Article  CAS  Google Scholar 

  15. M. Y. Song, R. Lee, and I. H. Kwon, Solid state Ionics 156, 319 (2003).

    Article  CAS  Google Scholar 

  16. Y. Gao, M. V. Yakovleva, and W. B. Ebner, Electrochem. Soldi-State Lett 1, 117 (1998).

    Article  CAS  Google Scholar 

  17. S. H. Chang, S. G. Kang, S. W. Song, J. B. Yoon, and J. H. Choy, Solid State Ionics 86–88, 171 (1996).

    Article  Google Scholar 

  18. M. Guilmard, L. Croguennec, and C. Delmas, J. Electrochem. Soc. 150, 1287 (2003).

    Article  Google Scholar 

  19. J. N. Reimers, E. Rossen, C. D. Jones, and J. R. Dahn, Solid State Ionics 61, 335 (1993).

    Article  CAS  Google Scholar 

  20. R. Kanno, T. Shirane, Y. Inaba, and Y. Kawamoto, J. Power Sources 68, 145 (1997).

    Article  CAS  Google Scholar 

  21. G. Prado, E. Suard, L. Fournes, and C. Delmas, J. Mater. Chem. 10, 2553 (2000).

    Article  CAS  Google Scholar 

  22. E. Chappel, G. Chouteau, G. Prado, and C. Delmas, Solid State Ionics 159, 273 (2003).

    Article  CAS  Google Scholar 

  23. D. Tong, J. Cao, Q. Lai, A. Tang, K. Huang, Y. He, and X. Ji, Materials Chemistry and Physics 100, 217 (2006).

    Article  CAS  Google Scholar 

  24. A. Yu, G. V. Subba Rao, and B. V. R. Chowdari, Solid State Ionics 135, 131 (2000).

    Article  CAS  Google Scholar 

  25. H. U. Kim, S. D. Yoon, J. C. Lee, H. R. Park, C. G. Park, and M. Y. Song, J. Kor. Ceram. Soc. 42, 631 (2005).

    Article  CAS  Google Scholar 

  26. H. U. Kim, S. D. Yoon, J. C. Lee, H. R. Park, and M. Y. Song, J. Kor. Ceram. Soc. 42, 352 (2005).

    Article  CAS  Google Scholar 

  27. T. Ohzuku, A. Ueda, and M. Nagayana, J. Electrochem. Soc. 140, 1862 (1993).

    Article  CAS  Google Scholar 

  28. J. Kim and J. Amine, J. Power Sources 104, 33 (2002).

    Article  CAS  Google Scholar 

  29. C. Suryanarayana and M. Grant Norton, X-ray Diffraction, A Practical Approach, pp.207–222, Plenum Press, New York (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Youp Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M.Y., Mumm, D.R., Park, C.K. et al. Cycling performance of LiNi1−yMyO2 (M=Ni, Ga, Al and/or Ti) synthesized by wet milling and solid-state method. Met. Mater. Int. 18, 465–472 (2012). https://doi.org/10.1007/s12540-012-3013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-3013-3

Key words

Navigation